@Research Paper <#LINE#>Evaluation of Mbeya based organic fertiliser on maize yield and yield components in Malawi<#LINE#>Samuel @Mwafulirwa <#LINE#>1-14<#LINE#>1.ISCA-RJRS-2021-029.pdf<#LINE#>Ministry of Agriculture, Chitedze Agricultural Research Station Box 158 Lilongwe, Malawi<#LINE#>6/10/2021<#LINE#>16/5/2023<#LINE#>Recent boom in organic business in the name of Mbeya manure fertilizer has taken shape in commercialisation without ATCC approval as several implications were at stake. Laboratory and fields experiments were, therefore, conducted to ascertain the quality of the products with and without modifications. The original products, as proclaimed by suppliers, were evaluated against the control treatment of inorganic fertilizer and the modified products by inclusion of specific microorganisms in solubilisation of fixed nutrients and oxidation of ammonia and nitrite. Field layout followed Completely Randomized Block Design with three replications and 5 treatments viz Modified Funani Mbeya fertilizer, Modified Kambeu Mbeya fertilizer, Original Funani Mbeya fertilizer, Original Kambeu Mbeya fertilizer and the recommended inorganic fertilizer for Maize. Besides assessing the grain yield, biomass and nutrient bioavailability, effect of the organic fertiliser on biostimulation was also studied in the rhizospheric soil. Results showed that that there was no significant differences on grain yield and its components between Mbeya based organic fertilisers and inorganic fertilisers. However, maize yield and some parameters (environmental and nutrient content) was higher in modified organic fertiliser.<#LINE#>Kabwe G, Bigsby HR. (2016).@Why is adoption of agroforestry stymied in Zambia ? Perspectives from the ground-up Why is adoption of agroforestry stymied in Zambia ?.@Perspectives from the ground-up. doi:10.5897/AJAR2016.10952@Yes$Wang, N., Ding, L. J., Xu, H. J., Li, H. B., Su, J. Q., & Zhu, Y. G. (2015).@Variability in responses of bacterial communities and nitrogen oxide emission to urea fertilization among various flooded paddy soils.@FEMS Microbiology Ecology, 91(3), fiv013.@Yes$Singh, B., Singh, B. P., & Cowie, A. L. (2010).@Characterisation and evaluation of biochars for their application as a soil amendment.@Soil Research, 48(7), 516-525.@Yes$Feng, X., Ling, N., Chen, H., Zhu, C., Duan, Y., Peng, C., ... & Guo, S. (2016).@Soil ionomic and enzymatic responses and correlations to fertilizations amended with and without organic fertilizer in long-term experiments.@Scientific Reports, 6(1), 24559.@Yes$Snapp, S. S. (1998).@Soil nutrient status of smallholder farms in Malawi.@Communications in Soil Science and Plant Analysis, 29(17-18), 2571-2588.@Yes$Ten Berge, H. F., Hijbeek, R., Van Loon, M. P., Rurinda, J., Tesfaye, K., Zingore, S., ... & van Ittersum, M. K. (2019).@Maize crop nutrient input requirements for food security in sub-Saharan Africa.@Global Food Security, 23, 9-21.@Yes$Baghdadi, A., Halim, R. A., Ghasemzadeh, A., Ramlan, M. F., & Sakimin, S. Z. (2018).@Impact of organic and inorganic fertilizers on the yield and quality of silage corn intercropped with soybean.@PeerJ, 6, e5280.@Yes$Ahemad M, Kibret M. (2014).@Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective.@J King Saud Univ - Sci. 26(1). doi:10.1016/j.jksus.2013.05.001@Yes$Geng, Y., Cao, G., Wang, L., & Wang, S. (2019).@Effects of equal chemical fertilizer substitutions with organic manure on yield, dry matter, and nitrogen uptake of spring maize and soil nitrogen distribution.@PloS one, 14(7), e0219512.@Yes$Ortíz-Castro, R., Contreras-Cornejo, H. A., Macías-Rodríguez, L., & López-Bucio, J. (2009).@The role of microbial signals in plant growth and development.@Plant signaling & behavior, 4(8), 701-712.@Yes$Mwangi, A. M. K., Kahangi, E. M., Ateka, E., & Onguso, J. (2014).@Integration of commercial microbiological products into soil fertility practices as a potential option for acclimatization and growth of TC banana in Kenya.@@Yes$Kanyama-Phiri, G. Y. (2005).@Best-bet soil fertility management options: The case of Malawi.@In African Crop Science Conference Proceedings, Vol. 7, No. pt. 03 of 03, pp. 1039-1048.@Yes$Dubey, A., & Dubey, D. (2010).@Evaluation of cost effective organic fertilizers.@@Yes$Jitendra Malviya, J. M., Kiran Singh, K. S., & Vaibhavi Joshi, V. J. (2012).@Effect of phosphate solubilizing fungi on growth and nutrient uptake of ground nut (Arachis hypogaea) plants.@@Yes$Watts DB, Torbert HA, Feng Y, Prior SA. (2010).@Soil Microbial Community Dynamics as Influenced by Composted Dairy Manure .@Soil Properties, and Landscape Position. 175(10).@Yes$Tortella, G. R., Rubilar, O., Cea, M., Wulff, C., Martínez, O., & Diez, M. C. (2010).@Biostimulation of agricultural biobeds with NPK fertilizer on chlorpyrifos degradation to avoid soil and water contamination.@Journal of soil science and plant nutrition, 10(4), 464-475.@Yes$Macouzet, M. (2016).@Critical aspects in the conception and production of microbial based plant biostimulants (MBPB).@Probiotic Intelligentsia, 5, 29-38.@Yes$Oliveira ALM, Santos OJAP, Marcelino PRF, Milani KML. (2017).@Maize Inoculation with Azospirillum brasilense Ab-V5 Cells Enriched with Exopolysaccharides and Polyhydroxybutyrate Results in High Productivity under Low N Fertilizer Input.@8(September):1-18. doi:10.3389/fmicb.2017.01873@Yes$Carlson, R. R., Vidaver, A. K., Wysong, D. S., & Riesselman, J. H. (1979).@A pressure injection device for inoculation of maize with bacterial phytopathogens.@Plant Dis. Rep, 63, 736-738.@Yes$Korir H, Mungai NW, Thuita M, Hamba Y, Masso C. (2017).@Co-inoculation Effect of Rhizobia and Plant Growth Promoting Rhizobacteria on Common Bean Growth in a Low Phosphorus Soil.@8(February):1-10. doi:10.3389/fpls.2017.00141@Yes$Khan MS, Zaidi A, Ahemad M, Oves M, Wani PA. (2017).@Plant growth promotion by phosphate solubilizing fungi – current perspective.@0340 (June). doi:10.1080/03650340902806469@Yes$Iqbal Hussain, M., Naeem Asghar, H., Javed Akhtar, M., & Arshad, M. (2013).@Impact of phosphate solubilizing bacteria on growth and yield of maize.@Soil & Environment, 32(1).@Yes$Barary, M., Kordi, S., Rafie, M., & Mehrabi, A. A. (2015).@Effect of Harvesting Time on Grain Yield, Yield Components, and Some Qualitative Properties of Four Maize Hybirds.@International Journal of Agricultural and Food Research, 3(4).@Yes$Phiri AT, Malola K, Mwafulirwa S, Simwaka P. (2020).@Improving Maize Productivity under Rain-Fed Conditions through the Combined Use of Inorganic and Organic Fertilizer in Malawi.@4(2):22-27. doi:10.9734/APRJ/2020/v4i230082@Yes$Lunze, L., Abang, M. M., Buruchara, R. A., Ugen, M. A., Nabahungu, N. L., Rachier, G. O., ... & Rao, I. M. (2012).@Integrated soil fertility management in bean-based cropping systems of Eastern, Central and Southern Africa.@INTECH Open Access Publisher.@Yes$Ibeawuchi, I. I., Obiefuna, J. C., Ofor, M. O., Ihem, E. E., Nwosu, F. O., Nkwocha, V. I., & Ezeibekwe, I. O. (2009).@Constraints of resource poor farmers and causes of low crop productivity in a changing environment.@Researcher, 1(6).@Yes$Eze, S., Dougill, A. J., Banwart, S. A., Hermans, T. D., Ligowe, I. S., & Thierfelder, C. (2020).@Impacts of conservation agriculture on soil structure and hydraulic properties of Malawian agricultural systems.@Soil and tillage Research, 201, 104639.@Yes$Mahmood, F., Khan, I., Ashraf, U., Shahzad, T., Hussain, S., Shahid, M., ... & Ullah, S. (2017).@Effects of organic and inorganic manures on maize and their residual impact on soil physico-chemical properties.@Journal of soil science and plant nutrition, 17(1), 22-32.@Yes$Matiru, V. N., & Dakora, F. D. (2004).@Potential use of rhizobial bacteria as promoters of plant growth for increased yield in landraces of African cereal crops.@African Journal of Biotechnology, 3(1), 1-7.@Yes$Suseelendra Desai (2012).@Potential microbial candidate strains for management of nutrient requirements of crops.@African J Microbiol Res. 6(17):3924-3931.@Yes$Stella, M., & Halimi, M. S. (2015).@Gluconic acid production by bacteria to liberate phosphorus from insoluble phosphate complexes.@J Trop Agric Food Sci, 43(1), 41-53.@Yes$Bhardwaj D, Ansari MW, Sahoo RK, Tuteja N. (2014).@Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity.@Microb Cell Fact., 13(1).@Yes$Beyranvand, H., Farnia, A., Nakhjavan, S. H., & Shaban, M. (2013).@Response of yield and yield components of maize (Zea mayz L.) to different bio fertilizers.@International journal of Advanced Biological and Biomedical Research, 1(9), 1068-1077.@Yes$Bashan, Y., de-Bashan, L. E., Prabhu, S. R., & Hernandez, J. P. (2014).@Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998–2013).@Plant and soil, 378, 1-33.@Yes$Hussain, A., Arshad, M., Zahir, Z. A., & Asghar, M. (2015).@Prospects of zinc solubilizing bacteria for enhancing growth of maize.@Pakistan journal of agricultural sciences, 52(4).@Yes$Moraditochaee, M., Amiri, E., & Azarpour, E. (2012).@Effects zeolite and their integrated bio-fertilizer and different levels of chemical nitrogen fertilizer under irrigation management on yield and yield components of peanut (Arachis hypogaea L.) in north of Iran.@Annals of Biological Research, 3(11), 5007-5012.@Yes$Qureshi, M. A., Shakir, M. A., Iqbal, A., Akhtar, N., & Khan, A. (2011).@Co-inoculation of phosphate solubilizing bacteria and rhizobia for improving growth and yield of mungbean (Vigna radiata L.).@J. Anim. Plant Sci, 21(3), 491-497.@Yes$Tarafder HK, Dey A, Dasgupta S. Co-inoculation of phosphate solubilizing bacteria and Rhizobia for improving growth and yield of mungbean (Vigna radiata L.). 2016;11(1):207-212.@undefined@undefined@Yes$Park, J. H., Lee, H. H., Han, C. H., Yoo, J. A., & Yoon, M. H. (2016).@Synergistic effect of co-inoculation with phosphate-solubilizing bacteria.@Korean Journal of Agricultural Science, 43(3), 401-414.@Yes$Begum, S. M., & Rajesh, G. (2015).@Impact of microbial diversity and soil enzymatic activity in dimethoate amended soils series of Tamil Nadu.@Int J Environ Sci Technol, 4, 1089-1097.@Yes$Baraúna, A. C., da Silva, K., Pereira, G. M. D., Kaminski, P. E., Perin, L., & Zilli, J. E. (2014).@Diversidade e eficiência na fixação do nitrogênio de rizóbios isolados de nódulos de Centrolobium paraense.@Pesquisa Agropecuária Brasileira, 49(4), 296-305.@Yes$Behera, B. C., Singdevsachan, S. K., Mishra, R. R., Dutta, S. K., & Thatoi, H. N. (2014).@Diversity, mechanism and biotechnology of phosphate solubilising microorganism in mangrove—a review.@Biocatalysis and Agricultural Biotechnology, 3(2), 97-110.@Yes$Dil, M., Oelbermann, M., & Xue, W. (2014).@An evaluation of biochar pre-conditioned with urea ammonium nitrate on maize (Zea mays L.) production and soil biochemical characteristics.@Canadian Journal of Soil Science, 94(4), 551-562.@Yes$Anastasi, A., Tigini, V., & Varese, G. C. (2012).@The bioremediation potential of different ecophysiological groups of fungi.@In Fungi as bioremediators (pp. 29-49). Berlin, Heidelberg: Springer Berlin Heidelberg.@Yes$Sunithakumari, K., Padma Devi, S. N., Vasandha, S., & Anitha, S. (2014).@Microbial inoculants-a boon to zinc deficient constraints in plants-a review.@IJSRP, 4(6), 1-4.@Yes$Naveed, S., Rehim, A., Imran, M., Bashir, M. A., Anwar, M. F., & Ahmad, F. (2018).@Organic manures: an efficient move towards maize grain biofortification.@International Journal of Recycling of Organic Waste in Agriculture, 7, 189-197.@Yes$Iskander, A. L., Khald, E. M., & Sheta, A. S. (2011).@Zinc and manganese sorption behavior by natural zeolite and bentonite.@Annals of Agricultural Sciences, 56(1), 43-48.@Yes$Sarfaraz, Q., Silva, L. S. D., Drescher, G. L., Zafar, M., Severo, F. F., Kokkonen, A., ... & Solaiman, Z. M. (2020).@Characterization and carbon mineralization of biochars produced from different animal manures and plant residues.@Scientific Reports, 10(1), 955.@Yes$Bhattacharjee, S., & Sharma, G. D. (2012).@Effect of dual inoculation of arbuscular mycorrhiza and rhizobium on the chlorophyll, nitrogen and phosphorus contents of pigeon pea (Cajanus cajan L.).@@Yes$Mathivanan, S., Chidambaram, A. A., Sundramoorthy, P., Baskaran, L., & Kalaikandhan, R. (2014).@Effect of combined inoculations of Plant Growth Promoting Rhizobacteria (PGPR) on the growth and yield of groundnut (Arachis hypogaea L.).@International Journal of Current Microbiology and Applied Sciences, 3(8), 1010-1020.@Yes$Souza, R. D., Ambrosini, A., & Passaglia, L. M. (2015).@Plant growth-promoting bacteria as inoculants in agricultural soils.@Genetics and molecular biology, 38, 401-419.@Yes$Geisseler, D., & Scow, K. M. (2014).@Long-term effects of mineral fertilizers on soil microorganisms–A review.@Soil Biology and Biochemistry, 75, 54-63@Yes <#LINE#>Above-ground biomass and carbon stored by teak (Tectona grandis) in Gir National Park, Gujarat, India<#LINE#>Nidhi @Goyal,Jamal A. @Khanq,Nazneen @Zehra <#LINE#>15-19<#LINE#>2.ISCA-RJRS-2023-011.pdf<#LINE#>Wildlife Institute of India, Chandrabani, 248001, Dehradun, Uttarakhand, India@Department of Wildlife Science, Aligarh Muslim University, 202002, Aligarh, Uttar Pradesh (U.P.), India@Department of Wildlife Science, Aligarh Muslim University, 202002, Aligarh, Uttar Pradesh (U.P.), India<#LINE#>17/10/2023<#LINE#>24/11/2023<#LINE#>Earth's most crucial greenhouse gas is carbon dioxide (CO2), a gas responsible for absorbing and emitting heat. An accurate characterization of above-ground biomass and tree carbon in tropical forest is important to estimate their contribution to Global Carbon stocks. A non-invasive method was used to estimate the carbon stored by the dominant tree species of Gir National Park and Sanctuary (GNPS) i.e., Teak. Circular plots of 10 x 10 m were laid in GNPS with a systemic random sampling to get the Girth at Breast Height (GBH) of the trees. An allometric equation with GBH as one of the independent variables was already developed for Teak and was used to estimate the total biomass and stored Carbon in present study. The result indicates that total dry biomass in National Park is 189.07 ± 6.7 kg per tree. The Carbon sequestered per tree is 94.5(±3.3) with 16.34 (±0.02) tonnes of carbon and 59.96 tonnes of CO2 per hectare. In case of Wildlife sanctuary, the total dry biomass was 202.42 kg (± 18.2) per tree. The carbon sequestered per tree is 101.21 kg (± 9.14) with 9.113 (± 0.02) tonnes of carbon and 33.44 tonnes of CO2 per hectare. It is the first study to estimate dry biomass and carbon stored by the tress in GNPS and the carbon storage vary among species so there is need to estimate carbon stored by other tree species in future. Carbon sequestration plays a vital role in addressing climate change. Considering the impact of climate change, a synergistic approach involving both bioenergy and carbon sequestration emerges as the most effective strategy for long-term mitigation of CO2 emissions.<#LINE#>Vashum, K. T., & Jayakumar, S. (2012).@Methods to estimate above-ground biomass and carbon stock in natural forests-a review.@Journal of Ecosystem & Ecography, 2(4), 1-7.@Yes$Mohammadi, Z., Mohammadi Limaei, S., Lohmander, P., & Olsson, L. (2017).@Estimating the aboveground carbon sequestration and its economic value: case study: Iranian Caspian Forests.@Journal of Forest Research, 63(11), 511-518.@Yes$Lewis, S. L. (2006).@Tropical forests and the changing earth system.@Philosophical Transactions of the Royal Society B: Biological Sciences, 361(1465), 195-210.@Yes$Malhi, Y., & Grace, J. (2000).@Tropical forests and atmospheric carbon dioxide.@Trends in Ecology & Evolution, 15(8), 332-337.@Yes$Brown, S. (1997).@Estimating biomass and biomass change of tropical forests: a primer (Vol. 134).@Food & Agriculture Org..@Yes$Chave, J., Andalo, C., Brown, S., Cairns, M. A., Chambers, J. Q., Eamus, D., ... & Yamakura, T. (2005).@Tree allometry and improved estimation of carbon stocks and balance in tropical forests.@Oecologia, 145, 87-99.@Yes$Clark, D. A., Brown, S., Kicklighter, D. W., Chambers, J. Q., Thomlinson, J. R., Ni, J., & Holland, E. A. (2001).@Net primary production in tropical forests: an evaluation and synthesis of existing field data.@Ecological applications, 11(2), 371-384.@Yes$Mbow, C., Verstraete, M. M., Sambou, B., Diaw, A. T., & Neufeldt, H. (2014).@Allometric models for aboveground biomass in dry savanna trees of the Sudan and Sudan-Guinean ecosystems of Southern Senegal.@Journal of Forest Research, 19(3), 340-347.@Yes$Bayen, P., Bognounou, F., Lykke, A. M., Ouédraogo, M., & Thiombiano, A. (2016).@The use of biomass production and allometric models to estimate carbon sequestration of Jatropha curcas L. plantations in western Burkina Faso.@Environment, Development and Sustainability, 18, 143-156.@Yes$Clark, D. A., Brown, S., Kicklighter, D. W., Chambers, J. Q., Thomlinson, J. R., Ni, J., & Holland, E. A. (2001).@Net primary production in tropical forests: an evaluation and synthesis of existing field data.@Ecological applications, 11(2), 371-384.@Yes$Tinker, D., Stakes, G. K., & Arcano, R. M. (2010).@Allometric equation development, biomass, and aboveground productivity in Ponderosa pine forests, Black Hills, Wyoming.@Western Journal of Applied Forestry, 25(3), 112-119.@Yes$Jha, K. K. (2015).@Carbon storage and sequestration rate assessment and allometric model development in young teak plantations of tropical moist deciduous forest.@India. J. For. Res. DOI 10.1007/s11676-015-0053-9@Yes$Jain, A. and Ansari, S. A. (2013).@Quantification by allometric equations of carbon sequestered by Tectona grandis in different agroforestory systems.@Journal of Forestry Research, 24(4), 699−702. DOI 10.1007/s11676-013-0406-1@Yes$Khanduri, V.P.; Lalnundanga; Vanlalremkimi, J. (2008).@Growing stock variation in different teak (Tectona grandis) forest stands of Mizoram, India.@Environmental Science- Journal of Forestry Research. DOI:10.1007/s11676-008-0043-2@Yes$Becknell, J.M., Kucek, L.K. and Powers, J.S. (2012).@Aboveground biomass in mature and secondary seasonally dry tropical forests: A literature review and global synthesis.@Forest Ecology and Management 276 (2012) 88–95@Yes$Alam, M. S. (2010).@First record of Lesser False Vampire Bat (Magaderma spasma) in Gir National Park and Sanctuary.@Journal of the Bombay Natural History Society, 107(2), 155-156.@Yes$Meena, R. L., & Kumar, S. (2012).@Management plan for Gir protected areas.@Gujarat Forest Department, Gujarat, India.@Yes$Hernandez, S.G. and Sheehan, S.W. (2020).@Comparison of carbon sequestration efficacy between artificial photosynthetic carbon dioxide conversion and timberland reforestation.@MRS Energy and Sustainability. doi:10.1557/mre.2020.32@Yes$Othman, R., & Kasim, S. Z. A. (2016).@Assessment of plant materials carbon sequestration rate for horizontal and vertical landscape design.@International Journal of Environmental Science and Development, 7(6), 410.@Yes$Ninan, K. N., & Inoue, M. (2014).@Valuing forest ecosystem services: Case study of a forest reserve in Japan.@In Valuing Ecosystem Services (pp. 245-268). Edward Elgar Publishing.@Yes$Melkania, N.P. (2009).@Carbon Sequestration in Indian Natural and Planted Forests.@Indian Forester, 135(3), 380-387.@No$Derwisch, S., Schwendenmann, L., Olschewski, R., Ho¨lscher, D. (2009).@Estimation and economic evaluation of aboveground carbon storage of Tectona grandis plantations in Western Panama.@New Forests 37, 227–240. DOI 10.1007/s11056-008-9119-2@No$Ravindranath, N.H. (1997).@Somasekhar BS, Gadgil M. Carbon ows in Indian forest.@Climatic Change; 35(3), 297–320.@Yes$Haripriya, G. S. (2000).@Estimates of biomass in Indian forests.@Biomass and bioenergy, 19(4), 245-258.@Yes$Chhabra, A., & Dadhwal, V. K. (2004).@Assessment of major pools and fluxes of carbon in Indian forests.@Climatic Change, 64(3), 341-360.@Yes$Manhas, R. K., Negi, J. D. S., Kumar, R., & Chauhan, P. S., (2006).@Temporal Assessment of Growing Stock, Biomass and Carbon Stock Of Indian Forests.@Climatic Change, 74: 191–221 DOI: 10.1007/s10584-005-9011-4@Yes$Kaul, M., Mohren, G. M. J., & Dadhwal, V. K. (2010).@Carbon storage and sequestration potential of selected tree species in India.@Mitigation and Adaptation Strategies for Global Change, 15:489–510 DOI 10.1007/s11027-010-9230-5@Yes$Fang, S., Xue, J., & Tang, L. (2007).@Biomass production and carbon sequestration potential in poplar plantations with different management patterns.@Journal of environmental management, 85(3), 672-679.@Yes$Haripriya, G. S. (2002).@Biomass carbon of truncated diameter classes in Indian forests.@Forest Ecology and Management, 168(1-3), 1-13.@Yes$Lal, M., & Singh, R. (2000).@Carbon sequestration potential of Indian forests.@Environmental monitoring and assessment, 60, 315-327.@Yes$Atkinson, G., & Gundimeda, H. (2006).@Accounting for India@Ecological Economics, 59(4), 462–476. https://doi.org/10.1016/J.ECOLECON.2005.10.022@Yes$FAO (2015).@The State of Food and Agriculture - Social protection and agriculture: breaking the cycle of rural poverty.@http://www.fao.org/3/a-i4910e.pdf@No$Brown, S., Gillespie, A. J., & Lugo, A. E. (1989).@Biomass estimation methods for tropical forests with applications to forest inventory data.@Forest science, 35(4), 881-902.@Yes$Kale, M., Singh, S., Roy, P. S., Deosthali, V., & Ghole, V. S. (2004).@Biomass equations of dominant species of dry deciduous forest in Shivpuri district, Madhya Pradesh.@Current Science, 683-687.@Yes$Keller, M., Palace, M., & Hurtt, G. (2001).@Biomass estimation in the Tapajos National Forest, Brazil: examination of sampling and allometric uncertainties.@Forest Ecology and Management, 154(3), 371-382.@Yes <#LINE#>Phytoremediation: Study of the reduction of nutrients in the Sado backwater by Thalia geniculata with Python and XLSAT software<#LINE#>YOVO @Franck,SAKIRIGUI @Amoussatou,YETE @Pélagie,TOGBE C. F. @Alexis ,TOPANOU @Nikita,OSSENI A. @Semiyou,ELEGBEDE @Fabrice,GABA U. @Yaé,WOTTO D. @Valentin,DIMON @Biaou,FATOMBI K. @Jacques <#LINE#>20-30<#LINE#>3.ISCA-RJRS-2023-012.pdf<#LINE#>Laboratoire Kaba de Recherche en Chimie et Applications, Faculté des Sciences et Techniques de Natitingou, (LaKReCA/FAST-NATI/UNSTIM), BP 72 Natitingou, Benin and Laboratoire de Chimie Physique–Matériaux et Modélisation Moléculaire (LCP3M), Faculté des Sciences et Techniques, Université d’Abomey-Calavi (LCP3M/ FAST-UAC), Benin @Laboratoire de Chimie Physique–Matériaux et Modélisation Moléculaire (LCP3M), Faculté des Sciences et Techniques, Université d’Abomey-Calavi (LCP3M/ FAST-UAC), Benin and Institut of Mathématicals and Physicals Sciences, Université d’Abomey-Calavi (LCP3M/ FAST-UAC), Benin@Laboratoire de Chimie Physique–Matériaux et Modélisation Moléculaire (LCP3M), Faculté des Sciences et Techniques, Université d’Abomey-Calavi (LCP3M/ FAST-UAC), Benin@Laboratoire Kaba de Recherche en Chimie et Applications, Faculté des Sciences et Techniques de Natitingou, (LaKReCA/FAST-NATI/UNSTIM), BP 72 Natitingou, Benin and Laboratoire de Chimie Physique–Matériaux et Modélisation Moléculaire (LCP3M), Faculté des Sciences et Techniques, Université d’Abomey-Calavi (LCP3M/ FAST-UAC), Benin @Laboratoire Kaba de Recherche en Chimie et Applications, Faculté des Sciences et Techniques de Natitingou, (LaKReCA/FAST-NATI/UNSTIM), BP 72 Natitingou, Benin@Laboratoire Kaba de Recherche en Chimie et Applications, Faculté des Sciences et Techniques de Natitingou, (LaKReCA/FAST-NATI/UNSTIM), BP 72 Natitingou, Benin@Institut of Mathématicals and Physicals Sciences, Université d’Abomey-Calavi (LCP3M/ FAST-UAC), Benin@Institut of Mathématicals and Physicals Sciences, Université d’Abomey-Calavi (LCP3M/ FAST-UAC), Benin@Laboratoire de Chimie Physique–Matériaux et Modélisation Moléculaire (LCP3M), Faculté des Sciences et Techniques, Université d’Abomey-Calavi (LCP3M/ FAST-UAC), Benin @Laboratoire de Chimie Physique–Matériaux et Modélisation Moléculaire (LCP3M), Faculté des Sciences et Techniques, Université d’Abomey-Calavi (LCP3M/ FAST-UAC), Benin @Laboratoire Kaba de Recherche en Chimie et Applications, Faculté des Sciences et Techniques de Natitingou, (LaKReCA/FAST-NATI/UNSTIM), BP 72 Natitingou, Benin<#LINE#>2/11/2023<#LINE#>16/12/2023<#LINE#>Phytoremediation is an advantageous technique because of the interesting purification efficiency. But it encounters shortcomings related to the stress effect of macrophytes. This research aims to study the purification capacity of Thalia geniculata in the reduction of nutrient pollutants in the water body of Sado in Hevie district. For this, the physico-chemical parameters of the water sampled in three zone (zone 1, zone 2, zone 3) of the body of water were determined in accordance with the French standard. There is a reduction in the nutrient loads of the waters fromzone 1 to 3. Nitrates and orthophosphates have decreased respectively from 0.97 to 0.76mg/L and from 2.01 to 0.46mg/L. The waters of zone 3 are less turbid (Turb: 15 NTU) and clearer (coul: 193 uca) compared to the others. The principal component analysis of the data with the XLSTAT software showed a strong correlation between suspended solids and orthophosphates on the one hand, then between dissolved oxygen and nitrates on the other. Thalia geniculata plants have played an important role in the reduction of nutrients and in the clarification of the waters of the Sado in Hevie. They can be used to treat domestic wastewater. This study will be extended to other macrophytes.<#LINE#>Programme d’Action du Government (PAG 2016-2021).@Etat de mise en œuvre du PAG.@Eau potable, pp:1-108.@No$Nougounou, B. (2020).@Benin: Government promote rapid expansion of access to water in rural areas.@Afrik 21, 1-6.@No$Hountondji, C.C. F. (2022).@Evaluation des plans, politiques et directives liés à la gestion à long terme des inondations et de la sècheresse dans la portion béninoise du bassin de la volta.@(PROJET VFDM), Bénin, pp:1-81.@No$CLOHOUNTO, J., & DEDJINOU, S. (2012).@Les bénéfices d’adduction d’eau potable dans la vallée de l’Oueme. Unversité de Cotonou, Benin.@@Yes$Ahrizat, N., Messaid, S., Tedjini, I. and Teksebti, B. (2015).@L’impact sanitaire de la réutilisation des eaux usées, Mémoire de fin d’étude de licence, Faculté des Sciences de la Nature et de la Vie.@Université ECHAHID HAMMA LAKHDAR D’EL-OUED, 1-77.@No$Ayola, D.P., Chouti, A.K., Dedjiho, C.A., Amlan, P., Tometin, L. & Chitou, N.E. (2023).@Fractionation, bioavailability and mobility of phosphorus in agricultural soils of the Mékrou River watershed.@Res. J. chem. sci., 13 (1), 8-16.@No$Cakpo, A. R., Akodedjrohoun, I., Goudjo, F. & Sagbo, E. (2023).@Cytogenotoxic characterization of Porto – Novolagoon waters in Benin.@Res. J. chem. sci., 13 (1),1-7.@Yes$Yovo, F., Dimon, B., Suanon, F., Eni, C. A., Agani, I. C., & Wotto, V. (2017).@Phytoremediation: Synergistic Effect of Thalia geniculata and Crassipes Eichhornia (Water Hyacinth) During Domestic Wastewater Treatment.@Plant, 5(1), 1-8.@Yes$Bilal, H., Li, X. &Iqbal, M.S. (2023).@Surface water quality, public health, and ecological risks in Bangladesh—a systematic review and meta-analysis over the last two decades.@Environ Sci Pollut Res 30, 91710–91728. https://doi.org/10.1007/s11356-023-28879-x@Yes$Polomski, R. F., Bielenberg, D. G., Whitwell, T., Taylor, M. D., Bridges, W. C., & Klaine, S. J. (2008).@Differential nitrogen and phosphorus recovery by five aquatic garden species in laboratory-scale subsurface-constructed wetlands.@Hort Science, 43(3), 868-874.@Yes$Mathieu, N. (2011).@L’assainissement collect if des communes rurales.@l’eau en Loire-Bretagne, N°82.@Yes$Ait-Mouheb, N., Mayaux, P.L., Sagasta, J.M., Hartani, T. & Molle, B. (2020).@Water reuse: A resource for mediterranean agriculture.@Water Resources in the Mediterranean Region. 2020, pp: 107-136. https://doi.org/10.1016/B978-0-12-818086-0.00005-4@Yes$Lagnika, L. (2005).@Etude phytochimique et activité biologique de substances naturelles isolées de plantes béninoises.@France/Bénin: Université Louis Pasteur Starsbourg/Université d@Yes$Aliyu, A. D. (2018).@Effectiveness of constructed wetlands on water quality improvement at the National Hydraulic Research Institute of Malaysia Lake (Doctoral dissertation, Master’s thesis).@Universiti Putra Malaysia, Selangor, Malaysia).@Yes$Mama, D. (2010).@Méthodologie et résultats du diagnostic de l@@Yes$Aina, M.P.; Kpondjo, N.M.; Adounkpe, J.; Chougourou, D. & Moudachirou, M. (2012).@Study of the Purification Efficiencies of three Floating Macrophytes in Wastewater Treatment.@Research Journal of Chemical Sciences; 1(3), 37-43.@Yes$Yovo, F., Dimon, B., Azandegbe, C.E., Suanon, F., Sagbo, E., Mama, D. & Aina, M. (2015).@Phytoremediation: Investigation and valorization of purifying power of Thalia geniculata for domestic wastewater treatment.@Research Journal of Chemical Sciences, 5(12), 1-6.@Yes$Samal, K., Kar S. & Trivedi, S. (2019).@Ecological floating bed (EFB) for decontamination of polluted water bodies: Design, mechanism and performance.@Journal of Environmental Management, 251, p109550, https://doi.org/10.1016/j.jenvman.2019.109550.@Yes$Yamontche, S., Roch C. J., Gouissi, F., Gratien, B., Degbey, C., & Houssou, C. (2020).@Etat des Lieux et facteurs associés en matière d’eau, d’hygiène et d’assainissement dans la Commune d’Abomey-Calavi Au Bénin.@European Scientific Journal, 16,(6), 5-24.@Yes$IFREMER (2000).@La surveillance FOGEM des zones humides côtières du Languedoc-Roussillon 2000-2005.@pp :1-915.@No$Afriani, S., Agustina, S., Karina, S., Irwan, I., & Kazrina, C. S. M. (2021).@The assessment of water quality by STORET method in the northern waters of Banda Aceh.@In IOP Conference Series: Earth and Environmental Science, Vol. 674, No. 1, p. 012062. IOP Publishing.@Yes$Gaba U. Y. (2022).@Bases_de_programmation_python-cahiers-virtuels-de-cours.@https://github.com/gabayae/bases_de_programmation_python-cahiers-virtuels-de-cours/blob/main/00.Introduction_à_python.ipynb. (Accessed 2023/10/23).@No$Cataliottivaldina, D. (1982).@Evolution de la turbidité des eaux du complexe lagunaire de Bages-Sigean-Port-La-Nouvelle (Aude, France).@Océanologica Acta, 5(4), 411-420.@Yes$Piranti, A. S., Nur, A. F., Widyartini, D. W., & Widyastuti, A. (2023).@Load allocation of nutrients causing eutrophication and their impact to lake: Case study of Menjer Lake, Wonosobo, Indonesia.@International Journal of Science and Technology Research Archive, 4(1), 235-243.@Yes$Balogoe, C. P. (2002).@Eau et la santé publique en milieu de climat de transition: Étude de cas de la Commune de Glazoué.@Mémoire de maîtrise FLASH/UAC.@Yes$Liu, X., Xia, J., Zu, J., Zeng, Z., Li, Y., Li, J., ... & Cai, W. (2023).@Spatiotemporal variations and gradient functions of water turbidity in shallow lakes.@Ecological Indicators, 147, 109928.@Yes$Ge, Z., Ma, Z., Zou, J., Zhang, Y., Li, Y., Zhang, L., & Zhang, J. (2023).@Purification of aquaculture wastewater by macrophytes and biofilm systems: efficient removal of trace antibiotics and enrichment of antibiotic resistance genes.@Science of the Total Environment, 901, 165943.@Yes$Illé, A (1997).@Suivi de la variation saisonnière de quelques paramètres biologiques et Physico-chimiques ; et de l’évolution des superficies d’eau de lac Bagre, Mémoire de fin d@Diplôme d@No$Zhi, W., Ouyang, W., Shen, C., & Li, L. (2023).@Temperature outweighs light and flow as the predominant driver of dissolved oxygen in US rivers.@Nature Water, 1(3), 249-260.@Yes$Hubiche, J. L. (2002).@La dynamique de la vie, l’Oxygène de l’eau, cahier indicateurs N°1, Loire Estuaire Cellule de Mesures et de Bilans.@@No$Machado-Silva, F., Weintraub, M., Ward, N., Kennedy O. D., Regier P.J., Ehosioke, S., Pushpajom, S.T, Peixoto, R. N., Sandoval, L., Forbrich, I., Kemner, K.M., O’Loughlin, E. J., Setten, L., Spanbauer, T., Bridgeman, T.B., O’Meara, T., Kenton A. R., Kaizad P., McDowell, N.G., Bond-Lamberty, B.P., Megonigal, P.J., Rich, R.L. & Bailey V.L. (2023). Groundwater redox dynamics across the terrestrial-aquatic interface of Lake Erie coastal ecosystems, bioRxiv,.06.12.544684;@undefined@undefined@Yes$Galvez-Cloutier, R., Ize, S., & Arsenault, S. (2002).@Manifestations et moyens de lutte contre l’eutrophi-sation.@Vecteur environnement, 35(6), 18.@Yes$Obreja, C.D.,Buruiana, D,L., Mereuta, E., Muresan, A. M., Mihaela A.C., Ghisman V., Roxana, E. & Axente, E. (2023).@Detection of reed using cnn method and analysis of the dry reed (phragmites australis) for a sustainable lake area.@Plant Methods, 19(61), 1-17.@Yes$Ouriemi, S (2000).@La Décantation, Cours : Traitement des Eaux I Chap.@III- pp :1-21.@No$Aljobeh, Z., Gillman, R. & Ibarra, C (2023).@Water quality analysis of the Thorgren Naturalized detention basin.@Research square, 1-14. https://doi.org/10.21203/rs.3.rs-2696465/v1.@Yes$Nougbode, A.E.I., Sessou, P., Youssao, A.K, Agbangnan, C.P., Mama, D. & Sohounhloue, K.C.D (2016).@Évaluation de gel d@Res. J. Sci., 5(1), 9-15.@Yes$Min, Xu., Brian, B., Chuanmin B, Hu, P.R. &Yarbro C.L.A (2023).@Water clarity monitoring in complex coastal environments: Leveraging seagrass light requirement toward more functional satellite ocean color algorithms.@Remote Sensing of Environment, 286,113-418,@Yes$LREO (2004).@Loi sur les Ressources en Eau de l’Ontario.@Règlement sur le prélèvement et le transfert d’eau (Règl. de l’Ont. 38/7/2004).@No$Urfa, M. G., Anand, Paul., Manimurugan, S. & Abdellah C. (2023).@Hydrotropism: Understanding the Impact of Water on Plant Movement and Adaptation.@Water, 15(3), 1-567.@Yes$Ayola, D.P., Chouti, A.K., Dedjiho, C.A., Amlan, P., Tometin ; L. &Chitou, N.E. (2023).@Fractionation, bioavailability and mobility of phosphorus in agricultural soils of the Mékrou River watershed.@Res. J. chem. sci., 13 (1), 8-16.@No$Tian, G, Liu, C., Xu, X., Xing, Y., Liu, J., Lyu, M., Feng, Z., Zhang, X., Qin, H., Jiang, H., Zhu, Z., Jiang, Y. & Ge, S. (2023).@Effects of Magnesium on nitrate uptake and sorbitol synthesis and translocation in apple seedlings.@Plant Physiology and Biochemistry, 196, 39-151.@Yes$Kane, M. & Morel, A.M. (1998).@Le lagunage à macrophytes, une technique permettant l@Centre d’Études et de Recherches sur les Énergies Renouvelables de DAKAR (CÉRER), Sud Sciences et Technologies N°1.@Yes$Hao, D., Li, X., Kong, W., Chen, R., Liu, J., Guo, H. & Zhou, J. (2023),@Phosphorylation regulation of nitrogen, phosphorus, and potassium uptake systems in plants.@The Crop Journal, 11(4), 1034-1047.@Yes$Berland, J. M., Boutin, C., Molle, P., & Cooper, P. (2001).@Procédés extensifs d@@Yes$Tonder, D.J., Van der Sluis, T., Pijlman, J. & Hoogmoed, M. (2023).@Exploring Cutting-Edge Strategies for Soil Carbon Enhancement and Emission: Reduction Mineral amended compost and crops with biological nitrification inhibition (BNI) capacity.@Instituut Louis Bolk, 1-46.@Yes$Rejsek, F. (2002).@Analyse des eaux: Aspects réglementaires et techniques. Centre régional de documentation pédagogique d@@Yes$Fletcher, J. N., Willby, D. M. O. & Quilliam, R. S. (2023).@Field-Scale Floating Treatment Wetlands: Quantifying Ecosystem Service Provision from Monoculture.@Polyculture Macrophyte Communities, Land, 12(7), 13-82. https://doi.org/10.3390/land12071382.@Yes$Wafa, H.A.,Rejab, B., Hassen, N. & Hassen, J. A (2023).@Investigation of a basic nitrification–denitrification biofiltration system for primary wastewater treatment.@Water Quality Research Journal, 58(2), 153–168.@Yes$Demers, A (2008).@Les eaux usées : une pollution encore et toujours à la une, comité de la recherche et de la sensibilisation, coalition québécoise pour une gestion responsable de l’eau.@Édith Lacroix, biol., 1-17.@Yes$Hartfiel, L. M., Hoover, N. L., Hall, S. J., Isenhart, T. M., Gomes, C. L., & Soupir, M. L. (2023).@Extreme low-flow conditions in a dual-chamber denitrification bioreactor contribute to pollution swapping with low landscape-scale impact.@Science of The Total Environment, 877, 162837.@Yes$Nan, L., Chen, C., Guan, W., Fan, X., Yang, M., Huang, Y., Wang, X., Dong, N. & Wang, H. (2023).@@@Yes$Sadia, S. P., Gnamba, C. Q. M., Kambiré, O., Konan, K. M., Berté, M., Koffi, K. S., ... & Ouattara, L. (2023).@Principal component analysis of physico-chemical parameters of wastewater from the University Hospital Center of Treichville in Côte d’Ivoire.@J. Mater. Environ. Sci., 14(7), 826, 837.@Yes$Toklo, R. M., Josse, R. G., Topanou, N., Togbe, A. F., Dossou-Yovo, P., & Coulomb, B. (2015).@Caractérisation physico-chimique des lixiviats d@International Journal of Innovation and Applied Studies, 13(4), 921.@Yes$Gorgan-Mohammadi, F., Rajaee, T., Zounemat-Kermani, M (2023).@Decision tree models in predicting water quality parameters of dissolved oxygen and phosphorus in lake water.@Sustain. Water Resour. Manag., 9, 1-12. https://doi.org/10.1007/s40899-022-00776-0@Yes$Duby, C., & Robin, S. (2006).@Analyse en composantes principales.@Institut National Agronomique, Paris-Grignon, 80, 53.@Yes$Moulia, V., Ait-Mouheb, N., Lesage, G., Hamelin, J., Wéry, N., Bru-Adan, V., Kechichian, L. & Heran, M (2023).@Short-term effect of reclaimed wastewater quality gradient on soil microbiome during irrigation.@Science of The Total Environment, 901, p166028.@Yes @Review Paper <#LINE#>Biodiversity loss and its economic costs: a global perspective<#LINE#>Ashok @Kumar,Aman @Shukla,Shashank @Kailkhura <#LINE#>31-37<#LINE#>4.ISCA-RJRS-2023-004.pdf<#LINE#>School of Pharmacy, Graphic Era Hill University, 510, Society Area, Clement Town, Dehradun-248002, Uttarakhand, India@School of Pharmacy, Graphic Era Hill University, 510, Society Area, Clement Town, Dehradun-248002, Uttarakhand, India@School of Pharmacy, Graphic Era Hill University, 510, Society Area, Clement Town, Dehradun-248002, Uttarakhand, India<#LINE#>31/5/2023<#LINE#>13/10/2023<#LINE#>This article reviews the economic costs of global biodiversity loss using existing literature. Biodiversity loss poses a major threat to the global economy, with estimated annual costs in the trillions of dollars. These costs primarily result from the loss of ecosystem services, such as food and water provision, carbon sequestration, regulation of climate, pests, and diseases. For example, Honeybee extinction from habitat loss and pesticide use may have significant economic consequences. They play a vital role in pollinating crops, supporting the global food supply and agricultural economy. Bee pollination is valued at $235-$577 billion globally and around $15 billion to the US agricultural sector per year. The article also highlights that developing countries bear most of the economic costs associated with biodiversity loss. The conclusion emphasizes the urgent need for global action through targeted policies, regulations, public awareness, education, investment in conservation and restoration efforts to preserve ecosystem services. In this article we suggest that addressing biodiversity loss and resolving this issue with preservation and other means will not only benefit the environment but also promote sustainable economic growth and human well-being.<#LINE#>Rawat, U. S., & Agarwal, N. K. (2015). Biodiversity: Concept, threats and conservation. Environment Conservation Journal, 16(3), 19-28.@undefined@undefined@Yes$Roe, D. (2019). Biodiversity loss—more than an environmental emergency. The Lancet Planetary Health, 3(7), e287-e289.@undefined@undefined@Yes$Pearce, F. (2006). No more seafood by 2050. New Scientist, 2.@undefined@undefined@No$Everard, M., Johnston, P., Santillo, D., & Staddon, C. (2020). The role of ecosystems in mitigation and management of Covid-19 and other zoonoses. Environmental science & policy, 111, 7-17.@undefined@undefined@Yes$Kurth, T., Wübbels, G., Portafaix, A., Meyer zum Felde, A., & Zielcke, S. (2021). The biodiversity crisis is a business crisis. Boston Consulting Group: Boston, MA, USA.@undefined@undefined@Yes$Hanley, N., & Perrings, C. (2019). The economic value of biodiversity. Annual Review of Resource Economics, 11, 355-375.@undefined@undefined@Yes$Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403(6772), 853-858.@undefined@undefined@Yes$Costanza, R., d@undefined@undefined@Yes$Bateman, I. J., Harwood, A. R., Mace, G. M., Watson, R. T., Abson, D. J., Andrews, B., ... & Termansen, M. (2013). Bringing ecosystem services into economic decision-making: land use in the United Kingdom. science, 341(6141), 45-50.@undefined@undefined@Yes$Khalifa, S. A., Elshafiey, E. H., Shetaia, A. A., El-Wahed, A. A. A., Algethami, A. F., Musharraf, S. G., ... & El-Seedi, H. R. (2021). Overview of bee pollination and its economic value for crop production. Insects, 12(8), 688.@undefined@undefined@Yes$Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403(6772), 853-858.@undefined@undefined@Yes$Aizen, M. A., Garibaldi, L. A., Cunningham, S. A., & Klein, A. M. (2009). How much does agriculture depend on pollinators? Lessons from long-term trends in crop production. Annals of botany, 103(9), 1579-1588.@undefined@undefined@Yes$Breeze, T. D., Vaissiere, B. E., Bommarco, R., Petanidou, T., & Seraphides, N. (2014). Agricultural Policies Exacerbate Honeybee Pollination Service Supply.@undefined@undefined@Yes$Brittain, C., Williams, N., Kremen, C., & Klein, A. M. (2013). Synergistic effects of non-Apis bees and honey bees for pollination services. Proceedings of the Royal Society B: Biological Sciences, 280(1754), 20122767.@undefined@undefined@Yes$Pettis, J. S., Vanengelsdorp, D., Johnson, J., & Dively, G. (2012). Pesticide exposure in honey bees results in increased levels of the gut pathogen Nosema. Naturwissenschaften, 99, 153-158.@undefined@undefined@Yes$Potts, S. G., Biesmeijer, J. C., Kremen, C., Neumann, P., Schweiger, O., & Kunin, W. E. (2010). Global pollinator declines: trends, impacts and drivers. Trends in ecology & evolution, 25(6), 345-353.@undefined@undefined@Yes$Dietemann, V., Ellis, J. D., & Neumann, P. (2013). The Coloss Beebook Volume I: Standard Methods for Apis mellifera Research (Vol. 52). International Bee Research Association IBRA.@undefined@undefined@Yes$Vanbergen, A. J., & Initiative, T. I. P. (2013). Threats to an ecosystem service: pressures on pollinators. Frontiers in Ecology and the Environment, 11(5), 251-259.@undefined@undefined@Yes$Gallai, N., Salles, J. M., Settele, J., & Vaissière, B. E. (2009). Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecological economics, 68(3), 810-821.@undefined@undefined@Yes$Aizen, M. A., Garibaldi, L. A., Cunningham, S. A., & Klein, A. M. (2008). Long-term global trends in crop yield and production reveal no current pollination shortage but increasing pollinator dependency. Current biology, 18(20), 1572-1575.@undefined@undefined@Yes$Dudley, N., Bhagwat, S. A., & Higgins-Zogib, L. (2018). The role of protected areas in achieving sustainable development. Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1840), 20170412.@undefined@undefined@Yes$Moreno-Mateos, D., Barbosa, O., García-Llorente, M., & Montes, C. (2017). Ecosystem restoration: a global strategy for biodiversity conservation. Journal of Applied Ecology, 54(1), 155-162.@undefined@undefined@Yes$Kremen, C., & Merenlender, A. M. (2018). Landscapes that work for biodiversity and people. Science, 362(6412), eaau6020.@undefined@undefined@Yes$Kremen, C., & Ostfeld, R. S. (2005). A call to ecologists: measuring, analyzing, and managing ecosystem services. Frontiers in Ecology and the Environment, 3(10), 540-548.@undefined@undefined@Yes$De Groot, R. S., Alkemade, R., Braat, L., Hein, L., & Willemen, L. (2010). Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. Ecological complexity, 7(3), 260-272.@undefined@undefined@Yes$Adams, W. M., & Hutton, J. (2007). People, parks and poverty: political ecology and biodiversity conservation. Conservation and society, 5(2), 147-183.@undefined@undefined@Yes$Naidoo, R., Balmford, A., Costanza, R., Fisher, B., Green, R. E., Lehner, B., ... & Ricketts, T. H. (2008). Global mapping of ecosystem services and conservation priorities. Proceedings of the National Academy of Sciences, 105(28), 9495-9500.@undefined@undefined@Yes$Milner-Gulland, E. J., & Bennett, E. L. (2003). Wild meat: the bigger picture. Trends in Ecology & Evolution, 18(7), 351-357.@undefined@undefined@Yes$Gómez-Baggethun, E., & Barton, D. N. (2013). Classifying and valuing ecosystem services for urban planning. Ecological economics, 86, 235-245.@undefined@undefined@Yes$Mittermeier, R. A., Turner, W. R., Larsen, F. W., Brooks, T. M., & Gascon, C. (2011). Global biodiversity conservation: the critical role of hotspots. In Biodiversity hotspots: distribution and protection of conservation priority areas (pp. 3-22). Berlin, Heidelberg: Springer Berlin Heidelberg.@undefined@undefined@Yes$Díaz, S., Demissew, S., Carabias, J., Joly, C., Lonsdale, M., Ash, N., ... & Zlatanova, D. (2015). The IPBES Conceptual Framework—connecting nature and people. Current opinion in environmental sustainability, 14, 1-16.@undefined@undefined@Yes