
 Research Journal of Recent Sciences __ ISSN 2277-2502

 Vol. 1 (ISC-2011), 426-429 (2012) Res.J.Recent Sci.

 International Science Congress Association 426

Mini Review Paper

Concurrency Issues of Distributed Advance Transaction Process
Sheetlani Jitendra and Gupta V.K.

Department of Computer Science, NIMS University, Jaipur, Rajasthan, INDIA

Available online at: www.isca.in
(Received 11th October 2011, revised 27th February 2012, accepted 29th 2012)

Abstract

The transactional model for distributed system has been around for many years and it is considered a well-established and

mature technology. The traditional transaction model, although suitable for conventional database applications such as

banking and airline reservation systems, does not provide much flexibility and high performance when used for complex

applications such as object oriented systems, long-lived transactions, or distributed systems. Nested transactions have been

proposed to overcome the limitations of flat transaction model. Nested transactions extend the notion that transactions are

flat entities by allowing a transaction to invoke atomic transactions as well as atomic operations. They provide safe

concurrency within transaction, allow potential internal parallelism to be exploited and offer an appropriate control

structure to support their execution. In this paper we describe distributed database system and their transaction process. In

this paper we also describe advance-nested transactions where the transactions from one system interact with the

transactions from another system. Such nested transactions can expect to become more important with the introduction of

network operating systems and heterogeneous distributed database systems. Finally, we will study about concurrency issue

of nested transaction with respect to distributed database.

Keyword: Distributed database, database, distributed processing, transaction, transaction manager, nested transaction, flat

transaction, atomicity, consistency, isolation, durability, subtransaction.

Introduction

A distributed transaction
1
 includes one or more statements

that reference/modifies data on two or more distinct sites of

distributed database. Having discussed distributed database

and feature of distributed database, now we are ready to

discuss distributed transaction and problem related to

distributed transaction.

In this chapter we discuss distributed database transaction

and concurrency related problem arise due to data

distribution and replication. We also discuss transaction

process model of distributed database and nature of

transaction. Distributed database transaction: Transaction

Management
2

deals with the problems of keeping the

database in a consistent state even when concurrent accesses

and failures occur.

A transaction consists of a series of operations performed on

a database. The important issue in transaction management is

that if a database was in a consistent state prior to the

initiation of a transaction, then the database should return to

a consistent state after the transaction is completed. This

should be done irrespective of the fact that transactions were

successfully executed simultaneously or there were failures

during the execution. Thus, a transaction is a unit of

consistency and reliability. The properties of transactions

will be discussed later in the properties section. Each

transaction has to terminate. The outcome of the termination

depends on the success or failure of the transaction. When a

transaction starts executing, it may terminate with one of two

possibilities:

The transaction aborts if a failure occurred during its

execution. The transaction commits if it was completed

successfully.A distributed transaction
2
 is an operations

bundle, in which two or more network hosts are involved.

Usually, hosts provide transactional resources, while

the transaction manager is responsible for creating and

managing a global transaction that encompasses all

operations against such resources. Distributed transactions,

as any other transactions, must have all

four ACID properties, where atomicity guarantees all-or-

nothing outcomes for the unit of work

A distributed transaction processing system is a collection of

sites or nodes that are connected by communication

networks.

http://www.isca.in/

Research Journal of Recent Sciences __ ISSN 2277-2502

Vol. 1 (ISC-2011), 426-429 (2012) Res. J. Recent Sci.

International Science Congress Association 427

Figure-1

Distributed database

The communication networks are usually reliable and high

speed wired networks, like LANs or WANs. At each node in

a distributed system, there is a local database management

system and a local transaction processing system (TPS) that

operates semi-independently and semi-autonomously. An

execution of a transaction in a distributed database system

may have to spread to be processed at many sites. The

transaction managers at different sites in a distributed

transaction system cooperate for managing the transaction

execution processes.

Distributed Transaction-Processing Model: We consider a

distributed database management system with a data

collection of sites interconnected by a network. Each site

runs one or more of the following software modules:

Figure-2

Transaction process

A client runs only the TM module, and a server runs only the

DM and CCS modules. TMs supervise transaction

interactions between users and the DDBMS, CCSs

coordinate transactions, and DMs manage the actual

database. The network is assumed to be perfectly reliable and

point-to-point FIFO. Figure shows the system architecture.

The database is a collection of data items or objects, and each

object is managed by a single DM. Users interact with the

DDBMS by executing transactions, which are on-line queries

or application programs. Transactions communicate with

TMs, Tms communicate with CCSs and DMs, and DMs

manage data. In order to execute a transaction, a client issues

read, predeclare, write, commit, lock-release and abort

operations. A server responds with read-response and lock-

set operations.

Transactions communicate
2
 with TMs, TMs communicate

with Dms, and DMs manage the data. TMs supervise

transactions. A single TM, meaning that the transaction

issues all of its database operations to that TM, supervises

each transaction executed in the DDBMS. The TM manages

any distributed computation that is needed to execute the

transaction. Four operations are defined at the transaction-

TM interface.

READ(X): returns the value of X (a logical data item) in the

current logical database state. WRITE(X, new-value): creates

a new logical database state in which X has then specified

new value. BEGIN and END operations to bracket

transaction executions. DMs manage the stored database,

functioning as backend database processors. In response to

commands from transactions, TMs issue commands to DMs

specifying stored data items to be read or written.

Category of distributed transaction: Transactions in a

distributed system can be categorized into two classes: Local

transactions are submitted directly to local transaction

managers. Local transactions only access data at one

database system at one site, and are managed by the local

transaction manager. On the other hand, global transactions

are submitted via the global transaction manager. A global

transaction can be decomposed into a set of sub-transactions;

ACID property of transaction: The concept of a database

transaction (or atomic transaction) has evolved in order to

enable both a well-understood database system behavior in a

faulty environment where crashes can happen any time,

and recovery from a crash to a well understood database

state. A database transaction is a unit of work, typically

encapsulating a number of operations over a database (e.g.,

reading a database object, writing, acquiring lock, etc.), an

abstraction supported in database and also other systems.

Each transaction
5
 has well defined boundaries in terms of

which program/code executions are included in that

transaction (determined by the transaction's programmer via

special transaction commands). Every database transaction

obeys the following rules (by support in the database system;

i.e., a database system is designed to guarantee them for the

transactions it runs):

Research Journal of Recent Sciences __ ISSN 2277-2502

Vol. 1 (ISC-2011), 426-429 (2012) Res. J. Recent Sci.

International Science Congress Association 428

Atomicity: Either the effects of all or none of its operations

remain ("all or nothing" semantics) when a transaction is

completed (committed or aborted respectively). In other

words, to the outside world a committed transaction appears

(by its effects on the database) to be indivisible, atomic, and

an aborted transaction does not leave effects on the database

at all, as if never existed.

Consistency: Every transaction must leave the database in a

consistent (correct) state, i.e., maintain the predetermined

integrity rules of the database (constraints upon and among

the database's objects). A transaction must transform a

database from one consistent state to another consistent state

(however, it is the responsibility of the transaction's

programmer to make sure that the transaction itself is correct,

i.e., performs correctly what it intends to perform (from the

application's point of view) while the predefined integrity

rules are enforced by the DBMS). Thus since a database can

be normally changed only by transactions, all the database's

states are consistent. An aborted transaction does not change

the database state it has started from, as if it never existed

(atomicity above).

Isolation: Transactions cannot interfere with each other (as

an end result of their executions). Moreover, usually

(depending on concurrency control method) the effects of an

incomplete transaction are not even visible to another

transaction. Providing isolation is the main goal of

concurrency control.

Durability: Effects of successful (committed) transactions

must persist through crashes (typically by recording the

transaction's effects and its commit event in a non-volatile

memory).

The concept of atomic transaction has been extended during

the years to what has become a Business transaction, which

actually implement types of Workflow and are not atomic.

However also such enhanced transactions typically utilize

atomic transactions as components.

Type of distributed transaction: By structure, distributed

transaction is dividing into two types. A flat transaction, FT,

is an operation, performed on a database, which may consist

of several simple actions. From the client’s point of view the

operation must be executed indivisibly. Main disadvantage

with FTs: If one action fails the whole transaction must

abort. A nested transaction
3
 occurs when a new transaction is

started by an instruction that is already inside an existing

transaction. Issues related to distributed transaction: There

are a number of issues or problems, which are peculiar to a

distributed database and these, require novel solutions. These

include the following:

Figure-3

Type of transitions

Distributed query optimisation: In a distributed database

the optimisation of queries by the DBMS itself is critical to

the efficient performance of the overall system. Query

optimisation must take into account the extra communication

costs of moving data from site to site, but can use whatever

replicated copies of data are closest, to execute a query. Thus

it is a more complex operation than query optimisation in

centralised databases.

Distributed update propagation: Update propagation in a

distributed database is problematic because of the fact that

there may be more than one copy of a piece of data because

of replication, and data may be split up because of

partitioning. Any updates to data performed by any user must

be propagated to all copies throughout the database. The use

of snapshots is one technique for implementing this.

Distributed catalog management: The distributed database

catalog entries must specify site(s) at which data is being

stored in addition to data in a system catalog in a centralised

DBMS. Because of data partitioning and replication, this

extra information is needed. There are a number of

approaches to implementing a distributed database catalog.

Centralised- Keep one master copy of the catalog, Fully

replicated - Keep one copy of the catalog at each site,

Partitioned - Partition and replicate the catalog as usage

patterns demand, Centralised/partitioned- Combination of the

above.

Distributed concurrency control: Concurrency Control
4
 in

distributed databases can be done in several ways. Locking

and timestamping are two techniques, which can be used, but

timestamping is generally preferred. The problems of

concurrency control in a distributed DBMS are more severe

than in a centralised DBMS because of the fact that data may

be replicated and partitioned. If a user wants unique access to

a piece of data, for example to perform an update or a read,

the DBMS must be able to guarantee unique access to that

Research Journal of Recent Sciences __ ISSN 2277-2502

Vol. 1 (ISC-2011), 426-429 (2012) Res. J. Recent Sci.

International Science Congress Association 429

data, which is difficult if there are copies throughout the sites

in the distributed database.

Transaction Concurrency: If transactions are

executed serially, i.e., sequentially with no overlap in time,

no transaction concurrency
4
 exists. However, if concurrent

transactions with interleaving operations are allowed in an

uncontrolled manner, some unexpected, undesirable result

may occur. Here are some typical examples:

The lost update problem: A second transaction writes a

second value of a data-item (datum) on top of a first value

written by a first concurrent transaction, and the first value is

lost to other transactions running concurrently which need,

by their precedence, to read the first value. The transactions

that have read the wrong value end with incorrect results.

The dirty read problem: Transactions read a value written by

a transaction that has been later aborted. This value

disappears from the database upon abort, and should not have

been read by any transaction ("dirty read"). The reading

transactions end with incorrect results.

The incorrect summary problem: While one transaction takes

a summary over the values of all the instances of a repeated

data-item, a second transaction updates some instances of

that data-item. The resulting summary does not reflect a

correct result for any (usually needed for correctness)

precedence order between the two transactions (if one is

executed before the other), but rather some random result,

depending on the timing of the updates, and whether certain

update results have been included in the summary or not.

Conclusion

Transaction management is an old concept in distributed data

base management systems (DDBMS) research. In this paper,

we have reviewed the basic concepts of advanced transaction

management. We discuss the basic concept of nested

transaction in distributed database systems, and also

discussed the advantage, property and operations of nested

transaction in distributed environments. It is really important

for database to have the ACID properties to perform.

We are in the process of investigating schemes by which the

performance of high security level transactions can be

improved without compromising with the security. Further

we are looking to secure real time distributed systems by

which the performance of high security level transactions can

be improved without compromising the security.

References

1. Tamer M. Ozsu and Patrick Valduriez. Principles of

Distributed Database Systems, Second Edition.

Prentice-Hall (1999)

2. Distributed Transaction Processing on an Ordering

Network By Rashmi Srinivasa, Craig Williams, Paul F.

Reynolds (2002)

3. Moss E.B., Nested transactions: An approach to reliable

distributed computing, Ph.D. dissertation,

Massachusetts Institute of Technology, Cambridge,

MA, USA (1981)

4. Philip A. Bernstein, Vassos Hadzilacos, and Nathan

Goodman, Concurrency Control and Recovery in

Database Systems, Addison-Wesley (1987)

5. Bernstein P. and Goodman N., Concurrency Control in

Distributed Database Systems, ACM Computing

Surveys 13/2, (1981)

6. Kaur Manpreet, Transaction Processing in Distributed

Databases. Amritsar College of Engg. and

Tech,Amritsar Sheetlani Jitendra, Jangde Manoj,

Concurrency Control in Distributed Transaction

process., Prabandhan and Taqniki 04, 271-274 (2010)

7. Sheetlani Jitendra, Jangde Manoj. Timely Computing

base Transaction in DBMS., Shodh 04, 5 (2010)

8. Sheetlani Jitendra, Jangde Manoj Concept and

Technique of Transaction process of Distributed

Database Management system., advancement in

computational technique and application 01, 190-194

(2011)

9. Sheetlani Jitendra and Jangde Manoj, Nested

Transaction Management in distributed database,

CGTTM, LNCT Indore, (2011)

10. Elmasri Navathe, Database Concepts By Pearson

Education, (2011)

11. Colloly., Data base Concepts By Pearson Education,

(2011)

12. Coronel Rob Introduction to Database Concepts, (2011)

13. Sheetlani Jitendra, Gupta Dhiraj, World of DBMS,

(2009)

