
 Research Journal of Recent Sciences __ ISSN 2277-2502

 Vol. 1 (ISC-2011), 422-425 (2012) Res.J.Recent Sci.

 International Science Congress Association 422

Mini Review Paper
Approaches for Deadlock Detection and Deadlock Prevention for

Distributed systems

Gupta Dhiraj and Gupta V.K.

Department of Computer Science, NIMS University, Jaipur, Rajasthan, INDIA

Available online at: www.isca.in
(Received 11th October 2011, revised 27th February 2012, accepted 30th March 2012)

Abstract

In today environment Distributed database is mainly used by large organization for their striking features. When we develop

a deadlock detection and prevention approaches for distributed database. A deadlock is a condition in a system where a

process cannot proceed because it needs to obtain a resource held by another process but it itself is holding a resource that

the other process needs. The same conditions for deadlocks in uniprocessors apply to distributed systems. Unfortunately, as

in many other aspects of distributed systems, they are harder to detect, avoid, and prevent. Deadlocks are a fundamental

problem in distributed systems. Deadlock detection is more difficult in systems where there is no such central agent and

processes may communicate directly with one another. Deadlock detection and resolution is one among the major challenges

faced by a Distributed System. In this paper, we discuss deadlock detection techniques and present approaches for detecting

deadlocks in Distributed Systems. We wish that our paper had served as a survey of the important solutions in the fields of

deadlock for distributed system.

Keywords: Distributed real-time databases, mobile real-time databases, concurrency control, data similarity, transaction

scheduling.

Introduction

In the non-distributed case, all the information on resource

usage lives on one system and the graph may be constructed

on that system. In the distributed
1
 case, the individual

subgraphs have to be propagated to a central coordinator. A

message can be sent each time an arc is added or deleted. If

optimization is needed, a list of added or deleted arcs can be

sent periodically to reduce the overall number of messages

sent.

Deadlock detection is more difficult in systems where there

is no such central agent and processes may communicate

directly with one another. In this paper, we discuss deadlock

detection techniques and present approaches for detecting

deadlocks in Distributed Systems.

What is Deadlock: A deadlock
2
 is a state where a set of

processes request resources that are held by other processes

in the set. A deadlock is a condition in a system where a

process cannot proceed because it needs to obtain a resource

held by another process but it itself is holding a resource that

the other process needs.

In above figure, Deadlock condition is shown, there are two

processes P1 and P2 and two resources R1 and R2. Resource

R1 is assign by process P1, held by process P2 and R2 is

assign by process P2, held by process P1. Deadlock is

present when the graph has cycles

Figure-1

Deadlock

Distributed Database system: A distributed database

management system ('DDBMS') is a software system that

permits the management of a distributed database and makes

the distribution transparent to the users.

Distributed database management system
3
 is software for

managing databases stored on multiple computers in a

network. A distributed database is a set of databases stored

on multiple computers that typically appears to applications

on a single database. Consequently, an application can

simultaneously access and modify the data in several

databases in a network. DDBMS is specially developed for

http://www.isca.in/

Research Journal of Recent Sciences __ ISSN 2277-2502

Vol. 1 (ISC-2011), 422-425 (2012) Res. J. Recent Sci.

International Science Congress Association 423

heterogeneous database platforms, focusing mainly on

heterogeneous database management systems (HDBMS).

A database physically stored in two or more computer

systems. Although geographically dispersed, a distributed

database system manages and controls the entire database as

a single collection of data. If redundant data are stored in

separate databases due to performance requirements, updates

to one set of data will automatically update the additional

sets in a timely manner.

Figure-2

Distributed Database Environment

Deadlock for Distributed System: A Distributed system

consists of a collection of sites that are interconnected

through a communication network each maintaining a local

database system. The same conditions for deadlocks in

uniprocessors apply to distributed systems. Unfortunately, as

in many other aspects of distributed systems, they are harder

to detect, avoid, and prevent. Distributed deadlocks can

occur in distributed systems when distributed transactions or

concurrency control is being used.

A system is deadlocked if and only if there exists a directed

cycle in the wait-for Graph (WFG). If we have 3 computers

1, 2, and 3, with resources respectively, A, B, and C and D

and we have three transactions T1, T2, and T3 that execute

as indicate below:

In the above WFD that has a directed cycle, thus we have a

distributed deadlock. A deadlock is a fundamental problem

in distributed systems. A process may request resources in

any order, which may not be known a priori and a process

can request resource while holding others. If the sequence of

the allocations of resources to the processes is not controlled,

deadlocks can occur.

Strategies for dealing with distributed deadlocks:

Distributed deadlocks can occur in distributed

systems when distributed transactions or concurrency

control is being used. There are four strategies for dealing

with distributed deadlocks:

Ignorance: ignore the problem (this is the most common

approach).

Detection: let deadlocks occur, detect them, and then deal

with them.

Prevention: make deadlocks impossible.

Avoidance: choose resource allocation carefully so that

deadlocks will not occur.

Table-1

Deadlock Process

T T1

(Transfer from B to

A and D)

T T2

(Transfer from

C to B)

T T3

(Transfer

from A to C)

Lock (D), Deposit to D

 Lock (B), Deposit

to B

Lock (A), Deposit to A

 Lock (C)

Deposit to C

Lock(B)

 Lock (C)

 Lock(A)

Deadlock

Withdraw from B Withdraw from C Withdraw from A

Unlock A,B,D Unlock B,C Unlock A,C

We have the wait-for graph (WFG) of distributed deadlock.

Figure-3

 WFG

Approaches for deadlock detection for distributed

systems: Deadlock detection
4
 requires examination of the

status of process-resource interactions for presence of cyclic

wait. Deadlock detection in distributed systems seems to be

the best approach to handle deadlocks in distributed systems.

The basic algorithm for distributed deadlock detection is as

follows:

Research Journal of Recent Sciences __ ISSN 2277-2502

Vol. 1 (ISC-2011), 422-425 (2012) Res. J. Recent Sci.

International Science Congress Association 424

Create the local wait for graph (WFG), Add possible edges

obtained from other sites that may cause deadlock, The local

WFG now also contains locks on remote objects and the sub

transaction holding those lock, Determine the cycles, if it is

to be found. There is a deadlock.

Path-pushing algorithms: The basic idea underlying this

class of algorithms is to build some simplified form of global

WFG at each site. For this purpose each site sends its local

WFG to a number of neighboring sites every time a deadlock

computation is performed. After the local data structure of

each site is updated, this updated WFG is then passed along,

and the procedure is repeated until some site has sufficiently

complete picture of the global situation to announce deadlock

or to establish that no deadlocks are present. The main

features of this scheme, namely, to send around paths of the

global WFG, have led to the term path-pushing algorithms.

Edge-chasing algorithms: The presence of a cycle in a

distributed graph structure can be verified by propagating

special messages called probes along the edges of the graph.

Probes are assumed to be distinct from resource request and

grant messages. When the initiator of such a probe

computation receives a matching probe, it knows that it is in

cycle in the graph. A nice feature of this approach is that

executing processes can simply discard any probes they

receive. Blocked processes propagate the probe along their

outgoing edges.

Distributed deadlock prevention: Deadlock prevention
4

protocols ensure that the system will never enter into a

deadlock state. The basic prevention strategies are:

The strategies require that each transaction lock its entire

data item before it begins execution. They impose partial

ordering of all data item and require that a transaction can

lock data item only in the order specified by the partial order.

An alternative to detecting deadlocks is to design a system so

that deadlock is impossible. One way of accomplishing this

is to obtain a global timestamp for every transaction (so that

no two transactions get the same timestamp). When one

process is about to block waiting for a resource that another

process is using, check which of the two processes has a

younger timestamp and give priority to the older process.

If a younger process is using the resource, then the older

process (that wants the resource) waits. If an older process is

holding the resource, the younger process (that wants the

resource) kills itself. This forces the resource utilization

graph to be directed from older to younger processes, making

cycles impossible. This algorithm is known as the wait-die

algorithm. An alternative method by which resource request

cycles may be avoided is to have an old process preempt

(kill) the younger process that holds a resource. If a younger

process wants a resource that an older one is using, then it

waits until the old process is done. In this case, the graph

flows from young to old and cycles are again impossible.

This variant is called the wound-wait algorithm.

Conclusion

In computer science, deadlock refers to a specific condition

when two or more processes are each waiting for the other to

release a resource, or more than two processes are waiting

for resources in a circular chain. Deadlock is a common

problem in multiprocessing where many processes share a

specific type of mutually exclusive resource known as

a software lock or soft lock.

The problem of deadlock detection in distributed systems has

undergone extensive study. In this paper we have tried to get

rid of on distributed deadlock by studying the performance

representative algorithms. We discuss distributed deadlock,

deadlock dictation and prevention. In this way, the

communication overhead of the deadlock detection

procedure is reducing.

References

1. Chandy K.M. and Misra J. A distributed algorithm for

detecting resource deadlocks in distributed systems. In

Proc., A CM SIGA CT-SIGOPS Syrup. Principles of

Distributed Computing, ACM, New York, 157-164

(1982)

2. Tamer M. Ozsu and Patrick Valduriez, Principles of

Distributed Database Systems, Second Edition,

Prentice-Hall, (1999)

3. Bernstein P. and Goodman N., Concurrency Control in

Distributed Database Systems, ACM Computing

Surveys 13/2 (1981)

4. Gligor V.D. and Shattuck S.H., Deadlock detection in

distributed systems, IEEE Trans. Softw., Eng. SE-6, 5

435-440 (1980)

5. Dijkstra N.W, and Scholten C.S., Termination detection

for diffusing computations, Inf. Process. Lett., 11(1), 1-

4 (1980)

6. Goldman B., Deadlock detection in computer networks.

Tech. Rep. MIT-LCS-TR185, Massachusetts Institute

of Technology, Cambridge, Mass., (1977)

7. Gray J.N., Notes on database operating systems. In

Operating Systems: An Advanced Course, Lecture

Notes in Computer Science, Springer-Verlag, New

York, 60, 393-481 (1978)

8. Science Dept., Univ. of Texas at Austin, July (1981). 7.

HOARE, C.A.R. Communicating sequential processes.

Commun. ACM21, 8, 666-677 (1978)

9. Marsland T.A., and Isloor S.S. Detection of deadlocks

in distributed database systems (1980)

Research Journal of Recent Sciences __ ISSN 2277-2502

Vol. 1 (ISC-2011), 422-425 (2012) Res. J. Recent Sci.

International Science Congress Association 425

10. Chandy K.M. and Misra J., A Distributed Algorithm for

detecting Deadlocks in Distributed Systems, 157-164

(1982)

11. Elmasri Navathe, Database Concepts By Pearson

Education, (2011)

12. Colloly., Data base Concepts By Pearson Education

(2011)

13. Coronel Rob, Introduction to Database Concepts (2011)

