International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

A review on cochineal (Dactylopius Coccus Costa) dye

Author Affiliations

  • 1Cankiri Karatekin University, Faculty of Science, Department of Chemistry, Cankiri, Turkey

Res. J. Recent Sci., Volume 9, Issue (3), Pages 37-43, July,2 (2020)

Abstract

Cochineal (Dactylopius coccus Costa) insect is an important and valuable dye source. Insect red dyes are historically very important. Especially, in the parts of the red or purple coloured of the historical textiles, they were used in the past. It contains 94-98% insect dye which is a carminic acid. A dired type of female of cochineal gives dyes. This insect dye source is an anthraquinone source. It has mostly been used in dyeing of silk, wool, cotton as well as in food colouring, cosmetic sector, pharmaceutical colourants and plastic applications. Natural pigments (lakes) were also obtained from cochineal insect extract in the literature. These lakes were used for paintings, frescoes, restoration and miniature etc. in the past. At the same time, because of its intense hues, colourfastness, and not toxic or carcinogenic, this dye source gained popularity in time. Cochineal produces different colours such as red hues, purple etc. to dye textiles using different mordants. This dye was a symbolizing element of power and prestige in the past.

References

  1. Karadag R. (2007)., Doğal Boyamacılık.Geleneksel El Sanatları ve Mağazalar İşletme Mudurluğu Yayınları No:3, T.C., Kultur ve Turizm Bakanlığı, Ankara, pp. 70, 71.
  2. Varella E.A. (2013)., Conservation Science for the Cultural Heritage : Applications of Instrumental Analysis., Lecture Notes in Chemistry, Springer, Vol. 79, pp. 173.
  3. Maynez-Rojas M.A., Casanova-Gonz?z E. and Ruvalcaba-Sil J.L. (2017)., Identification of natural red and purple dyes on textiles by fiber-optics reflectance spectroscopy., Spectrochim. Acta Part A: Molecular and Biomolecular Spectroscopy, 178, 239-50.
  4. Maier M.S., Parera S.D. and Seldes A.M. (2004)., Matrix-assisted laser desorption and electrospray ionization mass spectrometry of carminic acid isolated from cochineal., Int. J. Mass Spectrom., 232(3), 225-9.
  5. Kamel M.M., El Zawahry M.M., Ahmed N.S.E. and Abdelghaffar F. (2009)., Ultrasonic dyeing of cationized cotton fabric with natural dye., Part 1: Cationization of cotton using Solfix E. Ultrason. Sonochem., 16(2), 243-9.
  6. Yusuf M., Shabbir M. and Mohammad F. (2017)., Natural colorants: historical, processing and sustainable prospects., Nat. Prod. Bioprospect., 7(1), 123-45.
  7. Stathopoulou K., Valianou L., Skaltsounis A.L., Karapanagiotis I. and Magiatis P. (2013)., Structure elucidation and chromatographic identification of anthraquinone components of cochineal (Dactylopius coccus) detected in historical objects., Anal. Chim. Acta, 804, 264-72.
  8. Takeo N., Nakamura M., Nakayama S., Okamoto O., Sugimoto N., Sugiura S., Sato N., Harada S., Yamaguchi M., Mitsui N., Kubota Y., Suzuki K., Terada M., Nagai A., Sowa-Osako J., Hatano Y., Akiyama H., Yagami A., Fujiwara S. and Matsunaga K. (2018)., Cochineal dye-induced immediate allergy: Review of Japanese cases and proposed new diagnostic chart., Allergol. Int., 67(4), 496-505.
  9. Cosentino H.M., Takinami P.Y.I. and Del Mastro N.L. (2016)., Comparison of the ionizing radiation effects on cochineal, annatto and turmeric natural dyes., Radiat. Phys. Chem., 124, 208-11.
  10. Alvarez-Martin A. and Janssens K. (2018)., Protecting and stimulating effect on the degradation of eosin lakes. Part 1: Lead white and cobalt blue., Microchem. J., 141, 51-63.
  11. Karadağ R. and Dolen E. (1997)., Examination of historical textiles with dyestuff analyses by TLC and derivative spectrophotometry., Tr. J. of Chemistry, 21(2), 126-33.
  12. Deveoglu O., Torgan E. and Karadag R. (2010)., Identification of Dyestuffs in the Natural Pigments Produced with Al3+, Fe2+ and Sn2+ Mordant Metals from Cochineal (Dactylopius coccus Costa) and Walloon oak (Quercus ithaburensis Decaisne) by HPLC-DAD., Asian J. Chem., 22(9), 7021-30.
  13. Karadag R., Yurdun T. and Dolen E. (2010)., Identification of Natural Red Dyes in 15-17th Centuries Ottoman Silk Textiles (Kaftans, Brocades, Velvets and Skullcaps) by HPLC with Diode Array Detection., Asian J. Chem., 22(9), 7043-56.
  14. Yurdun T., Karadag R., Dolen E. and Mubarak M.S. (2011)., Identification of natural yellow, blue, green and black dyes in 15th ? 17th centuries Ottoman silk and wool textiles by HPLC with diode array detection., Rev. Anal. Chem., 30(3-4), 153-64.
  15. Deveoglu O., Karadag R. and Yurdun T. (2011)., Qualitative HPLC Determination of Main Anthraquinone and Lake Pigment Contents from Dactylopius Coccus Dye Insect., Chem. Nat. Compd., 47(1), 103, 104.
  16. Arca S.A., Torgan E., Dagci K. and Karadag R. (2011)., Topkapi Sarayi Muzesi Padişah Elbiselerinin Restorasyon ve Konservasyonunda Tahribatsiz-Mikro Analiz Yontemlerinin Uygulanmasi Projesi. 20. Muze ?lısmaları ve Kurtarma Kazıları Sempozyumu, Bodrum, Turkiye, 25-29 Nisan, pp. 262., undefined
  17. Karadag R., Torgan E. and Yildiz Y. (2012)., Analyses of dye, weaving and metal thread in Ottoman Silk Brocades and their reproduction., Textiles and Politics: Textile Society of America 13th Biennial Symposium Proceedings, Washington, DC, September 19- 22, pp. 7.
  18. Yildiz Y. and Karadag R. (2015)., Periodic Comparison of Two Selected Historical Caftans by Non-destructive and Micro Analysis Methods., IJESRT, 4(7), 285-94.
  19. Karadag R., Torgan E., Taskopru T. and Yildiz Y. (2015)., Characterization of Dyestuffs and Metals from Selected 16?17th Century Ottoman Silk Brocades by RP-HPLC-DAD and FESEM-EDX., J. Liq. Chromatogr. Relat. Technol., 38(5), 591-9.
  20. Karadag R. and Torgan E. (2016)., Advantages and Importance of Natural Dyes in the Restoration of Textile Cultural Heritage., Int. J. Conserv. Sci., 7(1), 357-66.
  21. Nateri A.S., Dehnavi E., Hajipour A. and Ekrami E. (2016)., Dyeing of polyamide fibre with cochineal natural dye., Pigm. Resin Technol., 45(4), 252-258.
  22. Lech K., Witkoś K., Wileńska B. and Jarosz M. (2015)., Identification of unknown colorants in pre-Columbian textiles dyed with American cochineal (Dactylopius coccus Costa) using high-performance liquid chromatography and tandem mass spectrometry., Anal. Bioanal. Chem., 407(3), 855-67.
  23. Stael C., Cruz R., Naranjo B., Debut A. and Angulo Y. (2018)., Improvement of Cochineal Extract (Dactylopius coccus Costa) Properties Based on the Green Synthesis of Silver Nanoparticles for Application in Organic Devices., J. Nanotechnol., 1-11.
  24. Karaman Ş. and Soylemezoğlu F. (2017)., Sivas Ataturk Kongre ve Etnografya Muzesinde bulunan bir grup duz dokuma orneğinin boya ve renk analizi., II. Uluslararasi Akdeniz Sanat Sempozyumu, Antalya, Turkiye, 10-12 Mayıs, pp. 246, 247.
  25. Yılmaz Şahinbaşkan, B., Karadag, R., & Torgan, E. (2018)., Dyeing of silk fabric with natural dyes extracted from cochineal (Dactylopius coccus Costa) and gall oak (Quercus infectoria Olivier)., Journal of Natural Fibers, 15(4), 559-574.
  26. Velmurugan P., Tamil Selvi A., Lakshmanaperumalsamy P., Park J. and OhB. T. (2013)., The use of cochineal and Monascus purpureus as dyes for cotton fabric., Color. Technol., 129(4), 246-51.
  27. Serrano A., Sousa M.M., Hallett J., Lopes J.A. and Oliveira M.C. (2011)., Analysis of natural red dyes (cochineal) in textiles of historical importance using HPLC and multivariate data analysis., Anal. Bioanal. Chem., 401(2), 735-43.
  28. Serrano A., Sousa M., Hallett J., Simmonds M.S.J., Nesbitt M. and Lopes J.A. (2013)., Identification of Dactylopius cochineal species with high-performance liquid chromatography and multivariate data analysis., Analyst, 138, 6081-90.
  29. Borges M.E., Tejera R.L., D? L., Esparza P. and Ib?z E. (2012)., Natural dyes extraction from cochineal (Dactylopius coccus). New extraction methods., Food Chem., 132(4), 1855-60.
  30. Dufoss?. (2014)., Anthraquinones, the Dr Jekyll and Mr Hyde of the food pigment family., Food Res. Int., 65, 132-6.
  31. Gabrielli L., Origgi D., Zampella G., Bertini L., Bonetti S., Vaccaro G., Meinardi F., Simonutti R. and Cipolla L. (2018)., Towards hydrophobic carminic acid derivatives and their incorporation in polyacrylates., R. Soc. Open Sci., 5, 1-11.
  32. Ito Y., Harikai N., Ishizuki K., Shinomiya K., Sugimoto N. and Akiyama H. (2017)., Spiroketalcarminic acid, a novel minor anthraquinone pigment in cochineal extract used in food additives., Chem. Pharm. Bull., 65, 883?7.
  33. Grumezescu A.M. and Holban A.M. (2018)., Natural and artifical flavoring agents and food dyes., Handbook of Food Bioengineering., Vol. 7, Academic Press, Elsevier, United Kingdom, pp. 91.
  34. Vankar P.S. (2000)., Chemistry of natural dyes., Resonance, 5(10), 73-80.
  35. Singh H.B. and Bharati K.A. (2014)., Handbook of natural dyes and pigments., Woodhead Publishing India Pvt. Ltd., New Delhi, India, pp. 73.
  36. Yaman B. (2012)., Osmanlı kitap sanatlarında La?li murekkep yapımı., Suleyman Demirel ?iversitesi İlahiyat Fakultesi Dergisi, 28, 129-42.
  37. Khadijah Q. and Heba M. (2013)., Environmental production of fashion colors from natural dyes., Int. J. Phys. Sci., 8(16), 670-83.
  38. Rahman A.U. (2002)., Studies in natural products chemistry., Vol. 26, Bioactive Natural Products (Part G), Elsevier, First Edition, The Netherlands, pp. 629.
  39. Degano I., Ribechini E., Modugno F. and Colombini M.P. (2009)., Analytical methods for the characterization of organic dyes in artworks and in historical textiles., Appl. Spectrosc. Rev., 44(5), 363-410.
  40. Bechtold T. and Mussak R. (2009)., Handbook of natural colorants., Wiley Series in Renewable Resources, Wiley, United Kingdom, pp. 61.
  41. Doelle H.W., Rokem S. and Berovic M. (2009)., Biotechnology: special processes for products, fuel and energy., Vol. VII, Encyclopedia of life support system, Eolss publishers co. ltd., Oxford, United Kingdom, pp. 145.
  42. Vankar P.S. (2016)., Handbook on natural dyes for industrial applications (extraction of dyestuff from flowers, leaves, vegetables)., 2nd revised edition, Niir Project Consultancy Services, Delhi, India, pp. 21.
  43. Brill T.B. (1980)., Light: Its interaction with art and antiquities., Plenum press, New York, USA, pp. 160.
  44. Finlay V. (2004)., Color: A natural history of the palette., Random house trade paperbacks, New York, USA, pp. 156.
  45. S?in M. (2017)., The chemistry of plants and insects: plants, bugs, and molecules., Royal society of chemistry, United Kingdom, pp. 155.
  46. Albini A., Fasani E. and Protti S. (2018)., Specialist periodical report: Photochemistry., Vol. 45, Royal society of chemistry, UK, pp. 91.
  47. Mazza, G., Lauro, G. J., & Francis, F. J. (2000)., Natural Food Colorants: Science and Technology., Marcel Decker: New York, NY, USA, 289-314.
  48. Butler H. (2000)., Poucher?s perfumes, cosmetics and soaps., 10th edition, Springer-Science + Business Media, B.V., Dordrecht, pp. 152.
  49. Cooksey C.J. (2019). The red insect dyes: carminic, kermesic and laccaic acids and their derivatives. Biotech. Histochem., 94(2), 100-7., undefined, undefined
  50. Gifford C. (2018)., The colours of history: how colours shaped the world., Quarto publishing plc, London, United Kingdom, pp. 23.
  51. Sharma Y. (2010)., Coastal histories: Society and ecology in Pre-modern India., Primus books, Delhi, pp. 5.
  52. Kumbasar E.P.A. (2011)., Natural dyes., In Tech Open Access Publisher, Rijeka, Croatia, pp. 32.
  53. Gurses A., Acikyildiz M., Gunes K. and Gurses M.S. (2016)., Dyes and pigments., Springer Briefs in Molecular Science, Green Chemistry for Sustainability, Springer, Switzerland, pp. 35.
  54. Ben-Dov Y., Miller D.R. and Gibson G.A.P. (2006)., A Systematic Catalogue of Eight Scale Insect Families (Hemiptera: Coccoidea) of the World., Elsevier, the Netherlands, pp. 209.
  55. Santiago E.C. and Lozano H.M.M. (2010)., Red gold ? Raising cochineal in Oaxaca., Textile Society of America Symposium Proceedings, Textile Society of America, Textiles and Settlement: from plains space to cyber space, 12th Biennial Symposium, Lincoln, Nebraska, October 6 -9, 1-7.
  56. Dapson R.W. (2007)., The history, chemistry and modes of action of carmine and related dyes., Biotech. Histochem., 82(4-5), 173-87.
  57. Sharma A.K. and Sharma A. (1994)., Chromosome techniques: a manual., Harwood Academic Publishers, Switzerland, pp. 22.
  58. Bhat T.A. and Wani A.A. (2017)., Chromosome structure and aberrations., Springer, India, pp. 92.
  59. Igoe R.S. and Hui Y.H. (1996)., Dictionary of food ingredients., Third edition, Springer-Science + Business Media, B.V., Dordrecht, pp. 36.
  60. Sicker D., Zeller K.P., Siehl H.U. and Berger S. (2019)., Natural products: isolation, structure elucidation, history., Wiley-VCH, Weinheim, Germany, pp. 110.
  61. Capinera J.L. (2008)., Encyclopedia of entomology., 2nd edition, Springer, Germany, pp. 3264.
  62. KarabulutS. (2009)., Koşinilden karminik asit pigmenti uretimi., Yuksek Lisans Tezi, Marmara ?iversitesi, Turkiye, pp. 4.
  63. Zıvdır H. (2009)., Potansiyometrik titrasyon yontemi ile karminik asit bileşiğinin asitlik sabitlerinin farklı sıcaklıklar ve iyonik şiddetlerde belirlenmesi., Yuksek Lisans Tezi, Gaziosmanpaşa ?iversitesi, Turkiye, pp. 2,3.
  64. Eastaugh N., Walsh V., Chaplin T. and Siddall R. (2008)., Pigment compendium: A dictionary and optical microscopy of historical pigments., Elsevier, Butterworth-Heinemann, Italy, pp. 124.
  65. Valipour P., Ekrami E. and Shams-Nateri A. (2014)., Colorimetric Properties of Wool Dyed with Cochineal: Effect of Dye-Bath pH., Prog. Color Colorants Coat., 7, 129-38.
  66. Tas E. (2019)., Tekstil hammaddelerinin boyanmasının tarihsel gelişimi ve boyarmaddeler., Turkish Studies ? Social Sciences, 14(3), 1095-120.
  67. Deveoglu O., Torgan E. and Karadag R. (2010)., Characterization of Colouring Matters by HPLC-DAD and Colour Measurements, Preparation of Lake Pigments with Ararat kermes (Porphyrophora hameli Brand)., Jordan J. Chem., 5(3), 307-15.
  68. Deveoglu O. and Karadag R. (2011)., Genel bir bakış: Doğal boyarmaddeler., Fen Bilimleri Dergisi, 23(1), 21-32.
  69. Yurdun T. (2015)., Tarihi tekstil boyalarının doğal bileşenleri., Toksikoloji Bulteni, 40, 1-27.
  70. Karadag R. (1997)., Turk halı, kilim ve kumaşlarında kullanılan doğal boyarmaddeler., Arış (Halı, Dokuma ve İşleme Sanatları Dergisi), 2, 39-51.
  71. Daniel M., Bhattacharya S.D., Arya A. and Raole V.M. (2006). Natural dyes: Scope and challenges. Scientific Publishers, India, pp. 8., undefined, undefined
  72. Kahraman N. and Karadag R. (2017)., Characterization of sixteenth to nineteenth century Ottoman silk brocades by scanning electron microscopy ? energy dispersive X-Ray spectroscopy and high-performance liquid chromatography., Anal. Lett., 50(10), 1553-67.
  73. Mantzouris D., Karapanagiotis I. and Karydis C. (2016)., Identification of cochineal and other dyes in Byzantine Textiles of the 14th century from Mount Athos., Mediterranean Archaeology and Archaeometry, 16(2), 159-65.
  74. Ferreira E.S.B., Hulme A.N., McNab H. and Quye A. (2004)., The natural constituents of historical textile dyes., Chem. Soc. Rev., 33(6), 329-36.
  75. Phipps E. (2010)., Cochineal red: the art history of a color., The Metropolitan Museum of Art (New York), Yale University Press, New Haven and London, pp. 29.
  76. Ammayappan L. and Shakyawar D.B.B. (2016)., Dyeing of carpet woolen yarn using natural dye from cochineal., J. Nat. Fibers, 13, 42?53.
  77. Morales K.M. and Berrie B.H. (2015)., A Note on characterization of the cochineal dyestuff on wool using microspectrophotometry., e-PS, 12, 8-14.
  78. Arroyo-Figueroa G., Ruiz-Aguilar G.M.L., Cuevas-Rodriguez G. and Gonzalez-Sanchez G. (2011)., Cotton fabric dyeing with cochineal extract: influence of mordant concentration., Color. Technol., 127(1), 39-46.
  79. Ajmal A. and Piergiovanni P.R. (2018)., Effect of mordanting on the adsorption thermodynamics and kinetics of cochineal for wool., Ind. Eng. Chem. Res., 57(12), 4462-9.
  80. Bae J.S. and Huh M.W. (2006)., The dye ability and antibacterial activity of wool fabric dyed with cochineal., J. Korea Soc. Dyers & Finishers, 18(5), 268-75.
  81. Błyskal B. (2015)., Fungal deterioration of a woollen textile dyed with cochineal., J. Cult. Herit., 16(1), 32-9.
  82. Campana M.G., Gorc?N.M.R. and Tuross N. (2015)., America?s red gold: multiple lineages of cultivated cochineal in Mexico., Ecology and Evolution, 5(3), 607?17.
  83. Carle R. and Schweiggert R.M. (2016)., Handbook on natural pigments in food and beverages: industrial applications for improving food color., Woodhead publishing series in food science, technology and nutrition: number 295, UK, pp. 410.
  84. Adrosko R.J. (1971)., Natural dyes and home dyeing., Dover publications, Inc., New York, pp. 61.
  85. Nabais P., Melo M.J., Lopes J.A., Vitorino T., Neves A. and Castro R. (2018)., Microspectrofuorimetry and chemometrics for the identification of medieval lake pigments., Herit. Sci., 6(13), 1-11.
  86. Nejad H.E. and Nejad A.E. (2013)., Cochineal (Dactylopius coccus) as one of the most important insects in industrial dyeing., Int. J. Adv. Biol. Biomed. Res., 1(11), 1302-8.
  87. Kunkely H. and Vogler A. (2011)., Absorption and luminescence spectra of cochineal., Inorg. Chem. Commun., 14(7), 1153-5.
  88. Yilmaz U.T.,Ergun F. and Yilmaz H. (2014)., Determination of the food dye carmine in milk and candy products by differential pulse polarography., J. Food Drug Anal., 22(3), 329-35.
  89. Enez N. (1987)., Doğal boyamacılık ? Anadolu?da yun boyamacılığında kullanılmış olan bitkiler ve doğal boyalarla yun boyamacılığı., Marmara ?iversitesi Yayın No: 449, Guzel Sanatlar Fakultesi Yayın No: 1, İstanbul, pp. 22.
  90. Valianou L., Wei S., Mubarak M.S., Farmakalidis H., Rosenberg E., Stassinopoulos S. and Karapanagiotis I. (2011)., Identification of organic materials in icons of the Cretan School of iconography., J. Archaeol. Sci., 38, 246-54.
  91. Karapanagiotis I., Daniilia S., Tsakalof A. andChryssoulakis Y. (2005)., Identification of red natural dyes in post-Byzantine icons by HPLC., J. Liq. Chromatogr. Relat. Technol., 28(5), 739-49.
  92. Osticioli I., Pagliai M., Comelli D., Schettino V. and Nevin A. (2019)., Red lakes from Leonardo, Spectrochim. Acta, Part A, 222, 1-6.
  93. Berrie B.H. and Strumfels Y. (2017)., Change is permanent: thoughts on the fading of cochineal-based watercolor pigments., Herit. Sci., 5(30) 1-9.