International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

# Mathematical inverse function (equation) for enzyme kinetics

Author Affiliations

• 1Department of Microbiology, Shardabai Pawar Mahila Mahavidyalaya, Shardanagar Tal. Baramati Dist. Pune-413115, India
• 2Sericulture Unit, Malegaon Sheti Farm, Agricultural Development Trust Baramati, Shardanagar, (Malegaon Khurd) Post Box No-35, Baramati, Pune 413 115, Maharashtra, India
• 3Department of Zoology, Shardabai Pawar Mahila Mahavidyalaya, Shardanagar, Tal. Baramati, Dist. Pune–413115 India

Res. J. Recent Sci., Volume 7, Issue (12), Pages 1-7, December,2 (2018)

## Abstract

The most significant application of Lineweaver–Burk plot lies in the determination of Constant of Michaelis in enzyme kinetics. The constant of Michaelis is well recognized as, “Km”. This constant of Michaelis is concentration of substrate [S] and it give the velocity (v) of reaction that correspond to half of it’s maximal or Vmax. The Km, the Michaelis constant, for practical purposes, is the concentration of substrate that allows the enzyme velocity to achieve half of it’s maximum Vmax (Vmax ÷ 2). Most of the readings of inverse of enzyme velocity (1 ÷ v) occupy position far to the right of the x-axis. Through the reverse the mathematical steps and get inverse of substrate concentration (1÷S) back from some output value, say inverse of respective velocity (1÷v), it is necessary to carry out the steps exactly in back sequence. That is to say, one should subtract the inverse of maximum velocity (1÷Vmax) from inverse of respective velocity (1÷v) and then multiply the result by Vmax/Km . This is going to yield the equation correspond to: 1/(S ) = (Vmax )/Km X 1/v - 1/(Km ) . The 1÷S and 1÷v for given enzyme catalyzed biochemical reaction deserve symmetry, that is to say the symmetry between a Lineweaver Burk Plot (the real function) and the inverse function for enzyme kinetics of present attempt. The co-ordinates of the point of intersection of both the equations 1/(V ) = (Km )/( Vmax) X 1/S+1/(Vmax ) and 1/(S ) = (Vmax )/Km X 1/v - 1/(Km ) correspond to: ( 1/(Vmax-Km ) , 1/(Vmax-Km ) ) .

## References

1. Lineweaver H. and Burk D. (1934)., The determination of enzyme dissociation constants., Journal of the American Chemical Society, 56(3), 658-666. doi:10.1021/ ja01318a036. https://pubs.acs.org/doi/ pdf/10.1021/ ja01318a036
2. Keith J. Laidler (1997)., New Beer in an Old Bottle., Eduard Buchner and the Growth of Biochemical Knowledge, 127-133. ed. A. Cornish-Bowden, Universitat de Valčncia, Valencia, Spain, 1997 http://bip.cnrs-mrs.fr/bip10/newbeer/laidler.pdf
3. Hayakawa K., Guo L., Terentyeva E.A., Li X.K., Kimura H., Hirano M. and Tanaka T. (2006)., Determination of specific activities and kinetic constants of biotinidase and lipoamidase in LEW rat and Lactobacillus casei (Shirota)., Journal of Chromatography B, 844(2), 240-250. doi:10.1016/j.jchromb.2006.07.006. PMID 16876490.
4. Greco W.R. and Hakala M.T. (1979)., Evaluation of methods for estimating the dissociation constant of tight binding enzyme inhibitors (PDF)., Journal of Biological Chemistry, 254(23), 12104-12109. PMID 500698.
5. Dick R.M. (2011)., Chapter 2. Pharmacodynamics: The Study of Drug Action., In Ouellette R, Joyce JA. Pharmacology for Nurse Anesthesiology. Jones & Bartlett Learning, 17-26. ISBN 978-0-7637-8607-6.
6. Berg Jeremy M., Tymoczko John L. and Stryer Lubert (2002)., The Michaelis-Menten Model Accounts for the Kinetic Properties of Many Enzymes., Biochemistry, 5th edition. W H Freeman.
7. Dowd John E. and Riggs Douglas S. (1965)., A comparison of estimates of Michaelis–Menten kinetic constants from various linear transformations., Journal of Biological Chemistry, 240(2), 863-869.
8. John E. Dowd and Douglas Briggs (1965)., Estimates of Michaelis – Menten kinetic constants from various linear transformation., The Journal of Biological Chemistry, 240(2). http://www.jbc.org/content/240/2/863.full.pdf
9. Scheinerman Edward R. (2012)., Mathematics: A Discrete Introduction., Nelson Education. Brooks/Cole, 173. ISBN 978-0840049421
10. Bobade S.N. and Khyade V.B. (2012)., Influence of Inorganic Nutrients on the Activity of Enzyme, Nitrate Reductase In the Leaves of mulberry., Morus alba (L). Journal of Recent Sciences, 1(5), 13-21. www.isca.in ISSN 2227-2502.
11. Hall Arthur Graham and Frink Fred Goodrich (1909)., Chapter II. The Acute Angle [14] Inverse trigonometric functions., Written at Ann Arbor, Michigan, USA. Trigonometry. Part I: Plane Trigonometry. New York, USA: Henry Holt and Company / Norwood Press / J. S. Cushing Co. - Berwick & Smith Co., Norwood, Massachusetts, USA., 15. Retrieved 2017-08-12. https://en.wikipedia. org/wiki/Inverse_function
12. Hanumant V. Wanave and Vitthalrao B. Khyade (2016)., Mathematics For Biological Sciences: Review On Occasion of April, The Mathematics Awareness Month., Review Of Research ISSN: 2249-894X Impact Factor : 3.8014(UIF) 6(3), 01-06. www.lbp.world
13. Vitthalrao B. Khyade and Hanumant V. Wanve (2018)., Review on Use of Mathematics for Progression of Biological Sciences., International Academic Journal of Innovative Research, 5(2), 30-38. ISSN 2454-390X www.iaiest.com
14. Vitthalrao B. Khyade and Hanumant V. Wanve (2018)., Statistics as Efficient TOOL of Analysis in the Biomedical Research., International Academic Journal of Science and Engineering, 5(2), 18-29. ISSN 2454-3896 www.iaiest.com
15. Vitthalrao B. Khyade and Hanumant V. Wanve (2018)., Mathematics for Biological Sciences., Global Journal of Science Frontier Research. GJSFR-C, 18(1), Version 1.0., 65-70. https://globaljournals.org/ev/GJSFR/671296205ad 0357af17804.03834801.pdf
16. Khyade V.B. and Eigen M. (2018)., Key Role of Statistics for the Fortification of Concepts in Agricultural Studies., International Academic Journal of Innovative Research, 5(3), 32-46. ISSN 2454-390X www.iaiest.com
17. Hall Keisler (2015)., Howard Jerome., Differentiation, Retrieved 2015-01-24.§2.4
18. Korn Grandino Arthur and Korn Theresa M. (1961)., 21.2.-4. Inverse Trigonometric Functions., Mathematical handbook for scientists and engineers: Definitions, theorems, and formulars for reference and review (3 ed.), Mineola, New York, USA: Dover Publications, Inc., 811. ISBN 978-0-486-41147-7.
19. Oldham Keith B., Myland Jan C. and Spanier Jerome (2009)., An Atlas of Functions: with Equator, the Atlas Function Calculator (2 ed.)., Springer Science+Business Media, LLC. doi:10.1007/978-0-387-48807-3. ISBN 978-0-387-48806-6. LCCN 2008937525.
20. Briggs W.L., Cochran L., Gillett B. and Schulz E.P. (2011)., Calculus: Early Transcendentals., Boston: Pearson. Addison-Wesley. ISBN 978-0-321-66414-3.
21. Devlin Keith J. (2004)., Sets, Functions, and Logic / An Introduction to Abstract Mathematics (3rd ed.)., Chapman & Hall / CRC Mathematics. ISBN 978-1-58488-449-1.
22. Fletcher Peter and Patty C. Wayne (1988)., Foundations of Higher Mathematics., PWS-Kent. ISBN 0-87150-164-3.
23. Lay Steven R. (2006)., Analysis / With an Introduction to Proof (4 ed.)., Pearson / Prentice Hall. ISBN 978-0-13-148101-5.
24. Smith Douglas, Eggen Maurice and St. Andre, Richard (2006)., A Transition to Advanced Mathematics (6 ed.)., Thompson Brooks/Cole. ISBN 978-0-534-39900-9.
25. Thomas Jr. and George Brinton (1972)., Calculus and Analytic Geometry Part 1: Functions of One Variable and Analytic Geometry (Alternate ed.)., Addison-Wesley.
26. Wolf Robert S. (1998)., Proof, Logic, and Conjecture / The Mathematician, W.H. Freeman and Co. ISBN 978-0-7167-3050-7.
27. Stryer L., Berg J.M. and Tymoczko J.L. (2002)., Biochemistry (5th ed.)., San Francisco: W.H.Freeman. ISBN 0-7167-4955-6.
28. Schomburg I., Chang A., Placzek S., Söhngen C., Rother M., Lang M., Munaretto C., Ulas S., Stelzer M., Grote A., Scheer M. and Schomburg D. (2013)., BRENDA in 2013: integrated reactions, kinetic data, enzyme function data, improved disease classification: new options and contents in BRENDA., Nucleic Acids Research, 41 (Database issue), D764-D772. doi:10.1093/nar/gks1049. PMC 3531171. PMID 23203881
29. Radzicka A. and Wolfenden R. (1995)., A proficient enzyme., Science, 267(5194), 90-93. Bibcode:1995Sci. 267...90R. doi:10.1126/science.7809611. PMID 7809611.
30. Callahan B.P. and Miller B.G. (2007)., OMP decarboxylase—An enigma persists., Bioorganic Chemistry, 35(6), 465-469. doi:10.1016/j.bioorg. 2007.07.004. PMID 17889251.
31. Menten L. and Michaelis M.I. (1913)., Die kinetik der invertinwirkung., Biochem Z, 49, 333-369. Michaelis L., Menten M.L., Johnson K.A. and Goody R.S. (2011). \"The original Michaelis constant: translation of the 1913 Michaelis-Menten paper\". Biochemistry. 50(39), 8264-8269. doi:10.1021/bi201284u. PMC 3381512. PMID 21888353.
32. Briggs G.E. and Haldane J.B. (1925)., A Note on the Kinetics of Enzyme Action., The Biochemical Journal, 19 (2), 338-339. doi:10.1042/bj0190338. PMC 1259181. PMID 16743508.
33. Ellis R.J. (2001)., Macromolecular crowding: obvious but underappreciated., Trends in Biochemical Sciences, 26 (10), 597-604. doi:10.1016/S0968- 0004(01)01938-7. PMID 11590012.
34. Kopelman R. (1988)., Fractal reaction kinetics., Science, 241(4873), 1620-1626.
35. Gilberto Gonzalez-Parra, Luis Acedo and Abraham Arenas (2011)., Accuracy of analytical-numerical solutions of the Michaelis-Menten equation., Computational & Applied Mathematics. On-line version ISSN 1807-0302, Comput. Appl. Math., 30(2), Săo Carlos 2011. http://dx.doi.org/ 10.1590/ S1807-03022011000200011.
36. Segel L.A. and Slemrod M. (1989)., The quasi-steady-state assumption: A case study in perturbation., Thermochim Acta, 31(3), 446-477. doi:10.1137/1031091.
37. Leskovac V. (2003)., Comprehensive enzyme kinetics., New York: Kluwer Academic/Plenum Pub. ISBN 978-0-306-46712-7.
38. Greco W.R. and Hakala M.T. (1979)., Evaluation of methods for estimating the dissociation constant of tight binding enzyme inhibitors., J BiolChem, 254(23), 12104-12109. PMID 500698.
39. Hayakawa K., Guo L., Terentyeva E.A., Li X.K., Kimura H., Hirano M., Yoshikawa K. and Nagamine T. (2006)., Determination of specific activities and kinetic constants of biotinidase and lipoamidase in LEW rat and Lactobacillus casei (Shirota)., J Chromatogr B AnalytTechnol Biomed Life Sci, 844(2), 240-50. doi:10.1016/j.jchromb.2006.07.006. PMID 16876490.
40. Dongare S.K., Shinde M.R. and Khyade V.B. (2018)., Mathematical Inverse Function (Equation) For Enzyme Kinetics., International Journal of Scientific Research in Chemistry (IJSRCH), 3(4), 35-42. Online ISSN: 2456-8457. http://ijsrch.com/archive.php? v=3&i=6&pyear=2018
41. Khyade V.B., Khyade V.V. and Khyade S.V. (2017)., The Baramati Quotient for the accuracy in calculation of Km value for Enzyme Kinetics., International Academic Journal of Innovative Research, 4(1), 1-22. ISSN 2454-390X www.iaiest.com.