International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

A study on effect of ligand on crystallography, morphology and photo-catalytic ability of ZnS nanostructures

Author Affiliations

  • 1Department of Chemistry, Punjabi University Patiala-147 002, Punjab, India
  • 2Department of Physics, Punjabi University Patiala-147 002, Punjab, India
  • 3Department of Chemistry, Punjabi University Patiala-147 002, Punjab, India

Res. J. Recent Sci., Volume 6, Issue (6), Pages 13-19, June,2 (2017)

Abstract

A single source precursor zinc complex: Zn(phenyl alanine dithiocarbamate)2 have been chosen to synthesize ZnS nanostructures by solvothermal route. Zn(phenyl alanine dithiocarbamate)2 has been synthesized from ligand L-phenyl alanine dithiocarbamate (PHEDTC) by simple mixing. Crystalline texture, phase analyses and size-shape analyses of prepared ZnS nanostructures have been carried out by XRD and TEM, respectively. The hexagonal structure ZnS nanocrystals of various morphologies (nanosheets, nanotriangles and nano pyramids) have been confirmed by diffraction and electron microscope studies, respectively. UV-vis. absorption studies have been carried for the detailed optical analyses. Photoluminescence (PL) study was carried out to check luminescence of synthesized ZnS nanostructures in electromagnetic spectrum. It has been reported that morphology of synthesized nanostructures strongly depends upon the precursor complex prepared from ligand; L-phenyl alanine dithiocarbamate. Photo-catalytic potential of the ZnS nanostructures has been observed in visible light using MB dye as a pollutant in water medium.

References

  1. Onwudiwe D.C. and Strydom C.A. (2015)., The Bipyridine Adducts of N-phenyldithiocarbamato Complexes of Zn (II) and Cd (II); Synthesis, Spectral, Thermal Decomposition Studies and Use as Precursors for ZnS and CdS Nanoparticles., Spectrochim. Acta. Mol. Biomo.l Spectrosc., 135, 1080-1089.
  2. Onwudiwe D.C., Mohammed A.D., Strydom C.A., Young D.A. and Jordaan A. (2014)., Colloidal Synthesis of Monodispersed ZnS and CdS Nanocrystals from Novel Zinc and Cadmium Complexes., Superlattices. Microstruct., 70, 98-108.
  3. Zeng X., Pramana S.S., Batabyal S.K., Mhaisalkar S.G., Chen X. and Jinesh K.B. (2013)., Low temperature synthesis of wurtzite zinc sulfide (ZnS) thin films by chemical spray pyrolysis., Phys. Chem. Chem. Phys., 15(18), 6763-6768.
  4. Zhu Y.C., Bando Y., Xue D.F. and Golberg D. (2004)., Oriented Assemblies of ZnS One‐Dimensional Nanostructures., Adv Mater., 16(9‐10), 831-834.
  5. Moore D. and Wang Z.L. (2006)., Growth of Anisotropic One Dimensional ZnS Nanostructures., J. Mater. Chem., 16(40), 3898-3905.
  6. Yu J.H., Joo J., Park H.M., Baik S.I., Kim Y.W., Kim S.C. and Hyeon T. (2005)., Synthesis of Quantum-Sized Cubic ZnS Nanorods by The Oriented Attachment Mechanism., ‎J. Am. Chem. Soc., 127(15), 5662-5670.
  7. Ajibade P.A., Onwudiwe D.C. and Moloto M.J. (2011)., Synthesis of Hexadecylamine Capped Nanoparticles Using Group 12 Complexes of N-alkyl-N-phenyl Dithiocarbamate as Single Source precursors., Polyhedron, 30(2), 246-252.
  8. Mohamed N.B.H., Haouari M., Zaaboub Z., Hassen F., Maaref H. and Ouada H.B. (2014)., Effect of Surface on The Optical Structure and Thermal Properties of Organically Capped CdS Nanoparticles., J. Phys. Chem, Solids., 75(8), 936-944.
  9. Zhou X., Zeng X., Yan X., Xia W., Zhou Y. and Shen X. (2014)., Shape and Phase Controlled ZnS Nanostructures and Their Optical Properties., Mater. Res. Bull., 59, 25-31.
  10. Zhao Q., Xie Y., Zhang Z. and Bai X. (2007)., Size-Selective Synthesis of Zinc Sulfide Hierarchical Structures and Their Photo-Catalytic Activity., Cryl. Grow. Des., 7(1), 153-158.
  11. Ajibade P.A. and Ejelonu B.C. (2013)., Group 12 Dithiocarbamate Complexes: Synthesis, Spectral Studies and Their Use as Precursors for Metal Sulfides Nanoparticles and Nanocomposites., Spectrochim. Acta. Mol. Biomol. Spectrosc., 113, 408-414.
  12. Hu J.S., Ren L.L., Guo Y.G., Liang H.P., Cao A.M., Wan L.J. and Bai C.L. (2005)., Mass Production and High Photo-Catalytic Activity of ZnS Nanoporous Nanoparticles., Angew. Chem. Int. Ed., 117(8), 1295-1299.
  13. Cesur H., Yazicilar T.K., Bati B. and Yilmaz V.T. (2001)., Synthesis, Characterization and Spectral and Thermal Studies of Some Divalent Transition Metal Complexes of Benzylpiperazine Dithiocarbamate., Synth. React. Inorg. Met. Org. Chem., 31(7), 1271-1283.
  14. Pickett N.L. and O’Brien P. (2001)., Synthesis of Semiconductor Nanoparticles using Single Molecular Precursors., The Chemical Record, 1(6), 467-479.
  15. Shahid M., Rüffer T., Lang H., Awan S.A. and Ahmad S. (2009)., Synthesis and Crystal Structure of a Dinuclear Zinc(II)-Dithiocarbamate Complex, Bis {[(μ 2-pyrrolidinedithiocarbamato-S, S′)(pyrrolidinedithiocarbamato-S, S′) zinc (II)]}., Coord. Chem., 62(3), 440-445.
  16. Coucouvanis D. (1979)., The Chemistry of The Dithioacid and 1, 1-Dithiolate Complexes, 1968-1977., Prog. Inorg. Chem., 26, 301-469.
  17. Efrima S. and Pradhan N. (2003)., Xanthates and Related Compounds as Versatile Agents in Colloid Science., CR Chim, 6(8), 1035-1045.
  18. Pike R.D., Cui H., Kershaw R., Dwight K., Wold A., Blanton T.N. and Gysling H.J. (1993)., Preparation of Zinc Sulfide Thin Films by Ultrasonic Spray Pyrolsis from Bis (diethyl dithiocarbamato) Zinc (II)., Thin Solid Films, 224(2), 221-226.
  19. Kaur B., Singh K. and Malik A.K. (2017)., Precursor Dependent Morphological and Photo-Catalytic Behaviour of CdS Nanostructures., Dyes. Pigm., 137, 352-359.
  20. Zhu J., Wang Y., Li Z. and Zhang J. (2014)., Synthesis and Biological Evaluation of Novel 99mTc-Oxo and 99mTc-Nitrido Complexes with Phenylalanine Dithiocarbamate for Tumor Imaging., ‎J. Radioanal. Nucl. Chem., 302(1), 211-216.
  21. Reddy K.H. and Reddy P.S. (2001)., Mixed ligand Zinc (II) and Cadmium (II) Complexes with Alkyl Xanthates and 2, 2-Bipyridyl., Ind. J. Chem., 40A, 1118-1120.
  22. Onwudiwe D.C. and Ajibade P.A. (2011)., Synthesis, Characterization and Thermal Studies of Zn (II), Cd (II) and Hg (II) Complexes of N-Methyl-N-Phenyldithiocarbamate: The Single Crystal Structure of [(C6H5) (CH3) NCS2] 4Hg2., Int. J.Mol.Sci., 12(3), 1964-1978.
  23. Prakasam B.A., Lahtinen M., Peuronen A., Muruganandham M., Kolehmainen E., Haapaniemi E. and Sillanpää M. (2015)., Phase Selective Synthesis of ZnS Nanoparticles From Structurally New Dithiocarbamate Precursor., Mater. Lett., 144, 19-21.
  24. Kaur B., Singh K. and Malik A.K. (2017)., Effect of ligands on Crystallography, Morphology and Photo-Catalytic Ability of ZnS Nanostructures., Dyes. Pigm., 142, 153-160.
  25. Viswanath R., Naik H.B., Kumar G.Y., Kumar P.P., Kumar G.A. and Praveen R. (2014)., EDTA-Assisted Hydrothermal Synthesis, Characterization and Photo luminescent Properties of Mn2+ Doped ZnS., J.lumi., 153, 446-452.
  26. Ayodhya D. and Veerabhadram G. (2016)., Green Synthesis, Optical, Structural, Photocatalytic, Fluorescence Quenching and Degradation Studies of ZnS Nanoparticles., J. Fluoresc., 26(6), 2165-2175.
  27. Kripal R., Gupta A.K., Mishra S.K., Srivastava R.K., Pandey A.C. and Prakash S.G. (2010)., Photoluminescence and Photoconductivity of ZnS: Mn2+ Nanoparticles Synthesized via Co-precipitation Method., Spectrochim. Acta. Mol. Biomol. Spectrosc., 76(5), 523-530.
  28. Viswanath R., Naik H.B., Kumar G.Y., Kumar P.P., Harish K.N., Prabhakara M.C. and Praveen R. (2014)., Synthesis and Photoluminescence Enhancement of PVA Capped Mn2+ Doped ZnS Nanoparticles and Observation of Tunable Dual Emission: A New Approach., App.Surf. Sci., 301, 126-133.
  29. Chitkara M., Singh K., Sandhu I.S. and Bhatti H.S. (2011)., Photo-Catalytic Activity of Zn1-xMnxS Nanocrystals Synthesized By Wet Chemical Technique., Nanoscale res. Let., 6(1), 438.
  30. Houas A., Lachheb H., Ksibi M., Elaloui E., Guillard C. and Herrmann J.M. (2001)., Photo-Catalytic Degradation Pathway of Methylene Blue in Water., Appl. Catal. B., 31(2), 145-157.
  31. Sharma M., Jain T., Singh S. and Pandey O.P. (2012)., Photocatalytic Degradation of Organic Dyes Under UV–Visible light using Capped ZnS Nanoparticles., Sol. Energ., 86(1), 626-633.