On the number of k-matchings of graphs

F. Asgari¹, R. Namazi¹, R. Vesalian¹* and M. Zallaghi²
¹Department of Mathematics, Mahshahr Branch, Islamic Azad University, Mahshahr, Iran
²Department of Mathematics, Isfahan University, Isfahan, Iran
r.vesalian@yahoo.com

Available online at: www.isca.in, www.isca.me
Received 23rd February 2016, revised 12th April 2017, accepted 30th April 2017

Abstract

In this paper an inductive formula for the number of k-matchings in graphs is derived using this formula. We concluded the number of k-matchings in special regular graphs and complete graphs.

Keywords: k-matching, matching polynomial, regular graphs.

Introduction

Let \(G = (V, E) \) be a graph in which \(V(G) \) and \(E(G) \) are the numbers of vertices and edges respectively. A matching in graph \(G \) is by definition a spanning sub graph of \(G \) whose components are vertices and edges. A k-matching is a matching with edges only. We show the number of k-matchings in a graph \(G \) by \(P(G, K) \) and assume \(P(G, 0) = 1 \).

Based on matching in a graph \(G \) we define the matching polynomial \(\mu(G, x) \) as follow

\[
\mu(G, x) = \sum_{k=0}^{\lfloor n/2 \rfloor} (-1)^k P(G, K)x^{n-2k}
\]

In which \(n \) is the number of vertices of graph \(G \).

We note that the graphs here are finite, loop less and contain no multiple edges.

The matching polynomial can be a tool for characterization of graphs. Two isomorphic graphs have the same matching polynomials that are called co-matching graphs.

However two co-matching graphs are not necessarily isomorphic¹.

Preliminaries

Finding the number of k-matching for \(k = 0, 1, \ldots, 6 \) have been done so far. For example it is easy to see \(P(G, 1) = m \) in which \(m \) is the number of edges.

For the number of two and three matching we have [2],

\[
P(G, 2) = \binom{m}{2} - \sum_{i=1}^{n} \binom{d_i}{2}
\]

\[
P(G, 3) = \binom{m}{3} - (m - 2) \sum_{i} \binom{d_i}{2} + 2 \sum_{i,j} \binom{d_i}{3} + \sum_{i,j} (d_i - 1)(d_j - 1) - N_T
\]

In which \(N_T \) is the number of triangles in \(G \).

The number of k-matchings for \(k = 4, 5, 6 \) can be found in literatures²-¹⁰.

The number of k-matchings calculated in the mentioned works shows when \(k \) grow up the formula for the number of k-matching gets very long and complicated. So calculating this number for \(k \geq 7 \) directly is not so logical and practical. Therefore in this work we derive an inductive formula for the number of k-matchings that makes it much easier to find it.

Number of k-matchings

Theorem 3.1: let \(G \) be a simple graph of order \(n \) and \(E(G) \) be the set of its edges. Then the number of k-matchings in graph \(G \) is:

\[
P(G, k) = \frac{1}{k} \sum_{i
eq j \in E(G)} P(G - i - j, k - 1)
\]

Proof: let \(S(G, k) \) be the set of all k-matchings in \(G \). We consider an arbitrary edge \(ij \) from \(E(G) \) then we have two cases:

Case I: \(ij \) is not the component of any k-matchings in \(S(G, k) \) therefore \(P(G - i - j, k - 1) = 0 \).

Case II: \(ij \) is not the component of at least one of the k-matchings in \(S(G, k) \) so the number of matchings in \(S(G, k) \) such that \(ij \) is one of their components is \(P(G - i - j, k - 1) \)

Now according to above cases by choosing any of k-matching in \(S(G, k) \), this k-matching is counted \(k \) times so:

\[
P(G, k) = \frac{1}{k} \sum_{i,j \in E(G)} P(G - i - j, k - 1)
\]
Corollary 3.2: if \(G \) is a simple graph then:

\[
P(G, k) = \frac{1}{k!} \sum_{i_1j_1, i_2j_2, \ldots, i_kj_k} P(G - i_1 - j_1, k - 1)
\]

In which the edges \(i_1j_1, i_2j_2, \ldots, i_kj_k \) changes in the sets of edges of \(E(G), E(G - i_1 - j_1), \ldots, E(G - i_1 - j_1 - \cdots - i_{k-1} - j_{k-1}) \) respectively.

Proof: according to theorem 3.1:

\[
P(G, k) = \frac{1}{k!} \sum_{i_1j_1, i_2j_2, \ldots, i_kj_k} P(G - i_1 - j_1, k - 1)
\]

And again using the above formula for graph \(G - i_1 - j_1 \) we have:

\[
P(G - i_1 - j_1, k - 1) = \frac{1}{k - 1} \sum_{i_2j_2 \in E(G - i_1 - j_1)} P(G - i_1 - j_1 - i_2 - j_2, k - 2)
\]

So

\[
P(G, k) = \frac{1}{k!} \sum_{i_1j_1, i_2j_2} P(G - i_1 - j_1 - i_2 - j_2, k - 2)
\]

And after \(k \) times:

\[
P(G, k) = \frac{1}{k(k - 1) \ldots (1)} \sum_{i_1j_1, i_2j_2} \sum_{i_kj_k} P(G - i_1 - j_1 - \cdots - i_k - j_k, 0)
\]

But

\[
P(G - i_1 - j_1 - \cdots - i_k - j_k, 0) = 1
\]

And the theorem is proved.

Example: let \(G \) be a connected, 3-regular graph of order 8 (Figure-1), we calculate \(P(G, 4) \)

Now if \(i_1j_1 \in E(G) \) be any of edges, \(ab, bc, cd, de, ef, fg, gh, ha, af, be, ch, dg \) then the graph \(G - i_1 - j_1 \) will be isomorphic with graph \(H \) (Figure-2):

\[
P(G, 4) = \frac{12}{4!} \sum_{i_1j_1, i_2j_2} \sum_{i_3j_3} \sum_{i_4j_4} 1
\]

In which \(i_1j_1 \in E(G), i_2j_2 \in E(H), i_3j_3 \in E(H - i_2 - j_2), i_4j_4 \in E(H - i_2 - j_2 - i_3 - j_3) \) for \(i_2j_2 \in E(H) \) we consider three following cases:

Case 1: If \(i_2j_2 \) belongs to the set of edges \(E_1 = \{uv, ef\} \) then the graph \(H - i_2 - j_2 \) is isomorphic with graph \(M \) (Figure-3):

\[
\sum_{i_1j_1 \in E_1} \sum_{i_2j_2} \sum_{i_3j_3} \sum_{i_4j_4} 1 = 2 \sum_{i_3j_3} \sum_{i_4j_4} 1
\]

In which \(i_1j_1 \in E(M), i_2j_2 \in E(M - i_3 - j_3) \).

Now because \(i_1j_1 \in E(M) \) therefor \(M - i_3 - j_3 \) will be isomorphic with single edged graph (Figure-4)

\[
\sum_{i_1j_1 \in E(M)} \sum_{i_2j_2} \sum_{i_3j_3} \sum_{i_4j_4} 1 = 4 \sum_{i_4j_4} 1 (i_4j_4 = kl) = 4
\]

Therefore

\[
\sum_{i_1j_1 \in E(M)} \sum_{i_2j_2} \sum_{i_3j_3} \sum_{i_4j_4} 1 = 2 \sum_{i_3j_3} \sum_{i_4j_4} 1 = 2 \times 4 = 8
\]

Case 1: If \(i_2j_2 \) belongs to the set of edges \(E_2 = \{uw, vx, wy, xz\} \) then graph, \(H - i_2 - j_2 \) isomorphic with \(N \) (Figure-5)
Consequently in this case we have:

\[\sum_{i_j \neq E_2} \sum_{i_j} 1 = 4 \sum_{i_j} 1 \]

in which \(i_3 \) \(j \) \(E(N) \) and \(i_4 \) \(j \) \(E(N - i_3 - j_3) \).

If \(i_3 j \) belongs to set of edges \(E_2 = \{i_j, ot\} \) then \(N - i_3 - j_3 \) is isomorphic with following single edged graph:

\[\text{Figure-5} \]

\[j \bullet \quad \bullet \quad t \]

So

\[\sum_{i_j \neq E_2} \sum_{i_j} 1 = 2 \sum_{i_j} 1 (i_j = j) = 2 \]

But if \(i_3 j \) = \(j t \) then \(N - i_3 - j_3 \) will be isomorphic with the following null graph:

\[\text{Figure-5} \]

\[i \bullet \quad \bullet \quad o \]

And so there is no choice for \(i_j \). Therefore

\[\sum_{i_j = j t} \sum_{i_j} 1 = 0 \]

Consequently in this case we have:

\[\sum_{i_j \neq E_2} \sum_{i_j} 1 = 4 \sum_{i_j} 1 \]

\[= 4 \left(\sum_{i_j \neq E_2} \sum_{i_j} 1 + \sum_{i_j = j t} \sum_{i_j} 1 \right) \]

\[= 4 (2 + 0) = 8 \]

Case III: If \(i_j j_2 = w x \) then the graph \(H - i_2 - j_2 \) is isomorphic with graph \(R \) (Figure-6)

\[\text{Figure-6} \]

\[u \bullet \quad \bullet \quad v \quad \bullet \quad y \]

So

\[\sum_{i_j = w x} \sum_{i_j} 1 = \sum_{i_j} 1 \]

In which \(i_3 j \) \(E(R), i_4 j \) \(E(R - i_3 - j_3) \)

Now since \(i_3 j \) \(E(R) \) therefor graph \(R - i_3 - j_3 \) is isomorphic with following single edged graph (Figure-7)

\[\text{Figure-7} \]

\[n \bullet \quad m \]

So

\[\sum_{i_j = E(R)} \sum_{i_j} 1 = 2 \sum_{i_j} 1 (i_k j = m n) = 2 \]

Therefore

\[\sum_{i_j = w x} \sum_{i_j} 1 = 2 \sum_{i_j} \sum_{i_j} 1 = 2 \]

Finally:

\[P(G, 4) = \frac{12}{4!} \sum_{i_j} \sum_{i_j} 1 \]

\[= \frac{12}{4} \left(\sum_{i_j \neq E_1} \sum_{i_j} 1 + \sum_{i_j \neq E_3} \sum_{i_j} 1 + \sum_{i_j = E(R)} \sum_{i_j} 1 \right) \]

\[= \frac{12}{4} (8 + 8 + 2) = 9 \]

Corollary 3.3: if \(G \) be the \(2^p \) regular graph of order \(2^{p+1} \) then if \(k \leq 2^p + 1 \) :

\[P(G, K) = \frac{1}{K!} \sum_{S=1}^{k} (2^p - S + 1)^2 \]

Proof: let \(m(G) \) be the number of edges. Because \(G \) is a \(2^p \) regular graph of order \(2^{p+1} \) so \(m(G) = 2^{2p} \)

We assume \(G_1 = G \) and choose the edge \(i_j j_1 \) from \(G_1 \) the graph

\[G_2 = G_1 - i_1 - j_1 \]

will be of order \(2^{p+1} - 2 \). Since the vertices \(i_1 \) and \(j_1 \) except each other are connected to \(2^p - 1 \) other vertices so if we omit the the vertices \(i_1, j_1 \) from graph \(G \), then the \(2^p - 1 \) \(2^p - 1 \) \(2^{p+1} - 2 \) vertices of graph \(G_2 \) are all of degree \(2^p - 1 \). This means the graph \(G_2 \) is a \(2^p - 1 \) regular graph of order \(2^{p+1} - 2 \).therefore

\[m(G_2) = \frac{1}{2} (2^{p+1} - 2)(2^p - 1) = (2^p - 1)^2 \]

Preceding this approach and using the same method. If we consider the edge \(i_j j_2 \) from \((2^p - 1)^2 \) edges of graph \(G_2 \), the graph \(G_3 = G_2 - i_2 - j_2 \) is \(2^p - 1 \) regular and of order \(2^{p+1} - 4 \) and therefore:

\[m(G_3) = (2^p - 2)^2 \]

After \(k \) steps, with induction we deduce that the graph \(G_k = G_{k-1} - i_{k-1} - j_{k-1} \) is \(2^p - k + 1 \) regular of order \(2^{p+1} - 2k + \)
2 and so \(m(G_k) = (2^p - k + 1)^2 \) but \(2^p - k + 1 \geq 0 \) that means \(k \leq 2^p + 1 \).

Now using the corollary 2.3 we have:

\[
P(G, k) = \frac{1}{k!} \sum_{i_1,j_1 \in E(G_1)} \sum_{i_2,j_2 \in E(G_2)} \ldots \sum_{i_k,j_k \in E(G_k)} 1
\]

\[
= \frac{1}{k!} m(G_1)m(G_2) \ldots m(G_k)
\]

\[
= \frac{1}{k!} \prod_{s=1}^{k} m(G_s)
\]

\[
= \frac{1}{k!} \prod_{s=1}^{k} (2^p - s + 1)^2
\]

Corollary 3.4: if \(G \) is a complete graph of order \(n \) then with assumption \(k \leq \frac{n+1}{2} \):

\[
P(G, k) = \frac{1}{k!} \prod_{s=1}^{k} (2^p - s + 1)^2
\]

Proof: if \(G \) is a complete graph of order \(n \) then the degree of any vertex of \(G \) is \(n - 1 \) and it’s size is \(\binom{n}{2} \). Assuming \(G_1 = G \) and choosing the edge \(i_1j_1 \) from \(G_1 \) the graph \(G_2 = G_1 - i_1 - j_1 \) is a complete graph of order \(n - 2 \) and so it’s size is \(\binom{n-2}{2} \). Therefore by induction we conclude that the graph \(G_k = G_{k-1} - i_{k-1} - j_{k-1} \) is a graph of order \(n - 2k + 2 \) and size \(\binom{n-2k+2}{2} \).

But because have the degree of the vertices of \(G_k \) is \(n - 2k + 2 \) so \(n - 2k + 2 \geq 0 \) or equivalently \(\leq \frac{n+1}{2} \).

Now according to corollary 3.2

\[
P(G, k) = \frac{1}{k!} \sum_{i_1,j_1 \in E(G_1)} \sum_{i_2,j_2 \in E(G_2)} \ldots \sum_{i_k,j_k \in E(G_k)} 1
\]

\[
= \frac{1}{k!} m(G_1)m(G_2) \ldots m(G_k)
\]

\[
= \frac{1}{k!} \binom{n}{2} \binom{n-2}{2} \binom{n-2k+2}{2}
\]

\[
= \frac{n!}{2k.k!(n-2k)!}
\]

Conclusion

The result of this paper shows that a recursive formula for finding the number of matching in a graph is more applicable than a direct computation as we see in our previous work the formulas for the number of six and seven matchings are really long and complicated.

Acknowledgment

This work has been done under the complete support of Islamic Azad University of Mahshahr so we are grateful for that.

References