International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

General Higher Order Intermodal Antibunching in two-mode Bose Einstein Condensates

Author Affiliations

  • 1Department of Physics, Panskura Banamali College, Panskura-721152, India
  • 2Department of Physics, Vidyasagar University, Midnapore - 721102, India
  • 3Department of Physics, Vidyasagar Teachers' Training College, Midnapore-721101, India

Res. J. Recent Sci., Volume 5, Issue (ISC-2015), Pages 13-16, -----Select----,2 (2016)


We solve analytically the fully quantum mechanical Hamiltonian of a two-mode Bose Einstein Condensates (BECs) system using Sen-Mandal approach which give more precise solution than that obtained using short-time approximation. These solutions are used to obtain the general higher order intermodal antibunching in the two mode BECs. We find the time dependent antibunching parameter in the inter-mode and the degree of antibunching parameter increases with order. The degree of nonclassicality can be manipulated with the magnitude of chemical potential difference between the modes and the interaction constants.


  1. Hillery M. (2000)., Quantum cryptography with squeezedstates., Phys. Rev. A, 61, 022309.
  2. Furusawa A., Sørensen J.L., Braunstein S.L., Fuchs C.A.,Kimble H.J. and Polzik E.S. (1998)., UnconditionalQuantum Teleportation., Science, 282, 706.
  3. Ekert A.K. (1991)., Quantum Cryptography Based onBell, , Phys. Rev. Lett., 67, 661.
  4. Yuan Z., Kardynal B.E., Stevenson R.M., Shields A.J.,Lobo C.J., Cooper K., Beattie N.S., Ritchie D.A. andPepper M. (2002)., Electrically Driven Single-PhotonSource., Science, 295, 102.
  5. Chen Z-B. and Zhang Y.D. (2002)., Possible realizationof Josephson charge qubits in two coupled Bose-Einsteincondensates., Phys. Rev. A, 65, 022318.
  6. Pyrkov A.N. and Byrnes T. (2013)., Quantum informationtransfer between two-component Bose-Einsteincondensates by optical fiber., Proc. SPIE 8700, 87001E.
  7. Boixo S., Datta A., Davis M.J., Flammia S.T., Shaji A.and Caves C.M. (2008)., Quantum Metrology: Dynamicsversus Entanglement., Phys. Rev. Lett., 101, 040403.
  8. Riedel M.F., Bohi P., Li Y., Hansch T.W., Sinatra A. andTreutlein P. (2010)., Atom-chip-based generation ofentanglement for quantum metrology., Nature (London)464, 1170.
  9. Giri S.K., Sen B., Ooi C.H.R. and Pathak A. (2014)., Single-mode and intermodal higher-ordernonclassicalities in two-mode Bose-Einstein condensates., Phys. rev. A, 89, 033628.
  10. Vardi A., Yurovsky V.A. and Anglin J.R. (2001)., Quantum effect on the dynamics of a two-mode atommoleculeBose-Einstein condensate., Phys. Rev. A 64063611.
  11. Allevi A., Olivares, S. and Bondani M. (2012)., Measuring high-order photon-number correlations inexperiments with multimode pulsed quantum states., Phys. Rev. A, 85, 063835.
  12. Avenhaus M., Laiho K., Chekhova M.V. and SilberhornC. (2010)., Accessing Higher Order Correlations inQuantum Optical States by Time Multiplexing. Phys., Rev. Lett. 104, 063602.
  13. Sen B. and Mandal S. (2005)., Squeezed states inspontaneous Raman and in stimulated Raman processes., J. Mod. Opt., 52, 1789.
  14. Gupta P., Pandey P. and Pathak A. (2006)., Higher orderantibunching is not a rare phenomenon., J. Phys. B., 39,1137.
  15. Sen B., Mandal S. and Perina J. (2007)., Quantumstatistical properties of the radiation field in spontaneousRaman and stimulated Raman processes, J. Phys. B: At.Mol. Opt. Phys., 40, 1417.
  16. Sen B. and Mandal S. (2008)., Amplitude-squared andamplitude-cubed squeezing in stimulated Raman and inspontaneous Raman scattering, J. Mod. Opt. 55, 1697.
  17. Sen B., Perinova V., Perina J., Luks A. and Krepalka J.(2011)., Sub-shot noise photon-number correlation instimulated and spontaneous Raman processes., J. Phys. B:At. Mol. Opt. Phys., 44, 105503.
  18. Sen B., Giri S.K., Mandal S., Ooi C.H.R. and Pathak A.(2013)., Intermodal entanglement in Raman processes., Phys. Rev. A, 87, 022325.
  19. Lee C.T. (1990)., Higher-order criteria for nonclassicaleffects in photon statistics., Phys. Rev. A, 41, 1721.
  20. Pathak A. and Garcia M. (2006)., Control of higher orderantibunching., Appl. Phys. B, 84, 479.