International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Humic Acid removal from Aqueous solution using Aluminium Pillared Bentonite clay and its Recovery

Author Affiliations

  • 1Departmaent of chemestry ,fatima Mata National College, Kollam-691001, India
  • 2Departmaent of chemestry ,fatima Mata National College, Kollam-691001, India
  • 3Department of Chemistry, University of Kerala, Trivandrum - 695581, India

Res. J. Recent Sci., Volume 5, Issue (ISC-2015), Pages 71-78, -----Select----,2 (2016)


This work aims to evaluate the performance of aluminium pillared clay for humic acid adsorption from aqueous solutions. Pillared clay was prepared from natural bentonite clay with aluminium chloride and was found to be effective for humic acid removal. The adsorption of humic acid onto Al-PILC has been dynamically and thermodynamically investigated. Batch experiments were carried out as a function of solution pH, contact time, humic acid concentration, ionic strength and temperature. The maximum adsorption capacity was observed at a pH of 3.0. The maximum adsorption of 90 and 80% took place at pH 3.0 from an initial concentration of 15 and 30 µmol L-1, respectively. Lagergren first order kinetic model was tested to describe the kinetic data. As the initial concentration increases from 15 to 60 µmol L-1 the percentage adsorption decreases from 90 to 65. The percentage removal of humic acid increased with increasing ionic strength. The equilibrium isotherm data were fitted to the Langmuir, Freundlich and Scatchard isotherm equations to obtain the characteristic parameters of each model. The Langmuir model represents the experimental data fairly well as is evident from the correlation coefficient r2 and relative standard deviation (?q%). The maximum adsorption capacity (Qo) obtained from the Langmuir isotherm plot was 26.18 µmol g-1 at pH 3.0 and at 30 oC. Isotherm experiments conducted at different temperatures allowed the calculation of the isosteric heat of adsorption at different surface loading. The desorption data showed that the spent PILC can be regenerated for further use by 0.1 M NaOH.


  1. Cheng W., Seyed A., Dastgheib and Karanfil T. (2005)., Adsorption of dissolved natural organic matter bymodified activated carbon, , Water Res., 39, 2281-2290. 2005.01.031.
  2. Kitis M., Kaplan S.S., Karakaya E., Yigit N.O. andCivlekoglu G. (2007)., Adsorption of natural organicmatter from waters by iron coated pumice., Chemosphere,66, 130-138. http://dx. doi:10.1016/j.chemosphere.2006.05.002.
  3. Liu A.G. and Gonzalez D.R. (1999)., Adsorption/desorption in a system consisting of HA,heavy metals, and clay minerals., J. Colloid Interface Sci.,218, 225-232. http://dx. doi:10.1006/jcis.1999.6419
  4. Frimmel F.H., Abbt-Braun G., Heumann K.G., Hock B.,Lüddemann H.D. and Spiteller M. (2002)., RefractoryOrganic Substances in the Environment, , Wiley-VCH,Weinheim.
  5. Gallard H. and Von Gunten U. (2002)., Chlorination ofnatural organic matter: kinetics of chlorination and THMformation, , Water Res, 36, 65-74. http://dx.doi:10.1016/S0043-1354(01)00187-7
  6. Zhou J.C., and Banks C.J. (1993)., Mechanism of humicacid colour removal from natural waters by fungalbiomass biosorption, , Chemosphere, 27, 607-620.http://dx. doi:10.1016/0045-6535(93)90096-N
  7. Anirudhan T.S. and Ramachandran M. (2007)., Surfactantmodified bentonite as adsorbent for the removal of humicacid from wastewaters., Applied Clay Science, 35, 276-281. http://dx.doi:10.1016/j.clay.2006.09.009.
  8. Sanly Lim M., Chiang K., Amal R., Fabris R., Chow C.and Drikas M. (2007)., Study on the removal of humicacid using advanced oxidation processes, , Sep SciTechnol, 42, 1391-1404. http://dx.doi:10.1080/01496390701289799
  9. Bai R.B., Zhang X. (2001)., Polypyrrole coated granulesfor humic acid removal, , J. Colloid Interface Sci., 243,52-60. http://dx.doi:10.1006/jcis.2001.7843.
  10. Yan W.L. and Bai R. (2005)., Adsorption of lead andhumic acid on chitosan hydrogel beads., Water Res. 39,688-698. http://dx.doi:10.1016/j.watres.2004.11.007
  11. Ferro-Garcia M.A., Rivera-Utrilla J., Bavtista-Toledoand Moreno-Castilla C. (1998)., Adsorption of humicsubstances activated carbon from aqueous solutions andtheir effect on the removal of Cr(III) ions, , Langmuir, 14,1880-1886. http://dx.doi: 10.1021/la970565h.
  12. Omri A., Benzina M., Trabelsi W. and Ammar N. (2014)., Adsorptive removal of humic acid on activated carbonprepared from almond shell: approach for the treatmentof industrial phosphoric acid solution, Desal Wat., Treatment, 52, 2241-2252. http://dx.doi:10.1080/19443994.2013.800003.
  13. Zhang Y., Zhang X., Song Y. and Wang J. (2015)., Enhanced performance of calcium-enriched coal ash forthe removal of humic acids from aqueous solution, Fuel, ,41, 93-98. http://dx.doi:10.1016/j.fuel.2014.10.054
  14. Beena T.A. and Anirudhan, T.S. (1999)., Adsorptionequilibria of Hg(II) on clays in presence of organicmaterials., J. Sci. Ind. Res., 58, 883-892.
  15. Bringle, C.D., Shibi, I.G., Vinod, V.P., and Anirudhan,T.S. (2005)., Sorption of humic acid from aqueoussolutions by lanthana-alumina mixed oxide pillaredbentonite., J. Sci. Ind. Res., 46, 782-788.
  16. Vinod V.P., Varghese S. and Anirudhan T.S. (2003)., Adsorption performance of Zr-pillared montmorillonitefor the removal of organic pollutants from aqueousphase., Indian J. of Chem. Technol. 10, 201-210.
  17. Lothenbach B., Furrer G. and Schulin R. (1997)., Immobilisation of heavy metals by polynuclearaluminium and montmorillonite compounds., Environ.Sci. Technol., 31, 1452-1462. http://dx.doi:10.1021/es960697h.
  18. Vaughan D.C.W. (1998)., Pillared Clays: A historicalperspective, Catalysis Today, 2, 187-198., http://dx.doi:10.1016/0920-5861 (88)85002-8.
  19. Mathews W., Madsen F.T. and Kahr G. (1999)., Sorptionof heavy-metal cations by Al and Zr-hydroxyintercalatedand pillared bentonite., Clays Clay Mine, 47,617-629.
  20. Vinod V.P. and Anirudhan T.S. (2001)., Sorption oftannic acid on zirconium pillared clay. J. Chem. Technol.Biotechnol, , 77, 92-101. http://dx.doi: 10.1002/jctb.530.
  21. Manohar D.M., Noeline B.F. and Anirudhan T.S. (2005)., Removal of Vanadium(IV) from aqueous solutions byadsorption process with aluminum-pillared bentonite., Ind. Eng. Chem. Res, 44, 6676-6684. http://dx.doi:10.1021/ie0490841.
  22. Manohar D.M., Noeline B.F. and Anirudhan T.S. (2006)., Adsorption performance of Al-pillared bentonite clay for the removal of cobalt (II) from aqueous phase., Appl. ClaySci., 31, 194-206. http://dx.doi:10.1016/j.clay.2005.08.008.
  23. Bennet H. and Read R.A. (1971)., Chemical Methods ofSilicate Analysis: A Handbook., Academic press, NewYork.
  24. Rump H.H. and Krist H. (1992)., Laboratory Manual forthe Examination of Water, Wastewater and Soil., V C HPublications, Weinheim.
  25. Zhu H.Y., Gao W.H. and Vasant E.P. (1995)., Theporosity and water adsorption of aluminium pillaredmontmorillonite. J. Colloid. Interface Sci., , 171, 377-385.http://dx doi:10.1006/jcis.1995.1193.
  26. Schoenhrr S., Goerz H., Gessner W. and Bertram R.(1983)., Protolysevorgaengl in Waessrigen aluminiumchloridlo esungen., Zeitschrift fuer chemie., 23, 429-434.
  27. Schnitzer, M., and Kodama, H. (1966)., Montmorillonite:effect of pH on its adsorption of a soil humic compound., Science, 153, 70-71. http://dx doi:10.1126/science.153.3731.70.
  28. Karickhoff S.W. (1981)., Semi-empirical estimation ofsorption of hydrophobic pollutants on natural sedimentsand soils, Chemosphere, , 10, 833-846. http://dxdoi:10.1016/0045-6535(81)90083-7.
  29. Manju G.N., Raji C. and Anirudhan T.S. (1998)., Evaluation of coconut husk carbon for the removal ofarsenic from water., Water Res., 32, 3062-3070. WaterRes., 32, 3062-3070. http://dx doi:10.1016/S0043-1354(98)00068-2.
  30. Michelson L.D., Gideon P.G., Pace E.G. and Kutal L.H.(1975)., Removal of soluble mercury from wastewater bycomplexing technique., Bulletin, vol. 74. U S Departmentof industry, Office of water research and technology.
  31. McKay G., Blair H.S. and Findon A. (1986)., Immobilisation of ions by biosorption, Edited by Eccles, ,H., Hunt, S. Ellis Harwood, Chichester U. K.
  32. Charrier M.J., Guibal E., Rousy J., Delanghe B. andCloirec P.L. (1996). Vanadium (IV) sorption by chitosan:Kinetics and equilibrium. Water Res., 30, 465-475.http://dx.doi:10.1016/0043-1354(95) 00154-9., undefined, undefined
  33. Osipow L.I. (1972)., Surface Chemistry: Theory andIndustrial Applications., Krieger, New York.
  34. Rashid M.A., Buckey D.E. and Robertson K.R. (1972)., Interactions of a marine humic acid with clay mineralsand a natural sediment., Geoderma 8, 11-27.http://dx.doi:10.1016/0016-7061(72)90029-8.
  35. Muller G., Radke C.J. and Prausnitz J.M. (1980)., Adsorption of weak organic electrolytes from aqueoussolution on activated carbon., Effect of pH. J. Phys.Chem. 84, 369-376. http://dx.doi: 10.1021/j100441a006.
  36. Giles C.H., McEwan T.H., Nakhwa S.N. and Smith D.(1960)., Studies in adsorption. Part XI. A system ofclassification of solution isotherms, and its use indiagnosis of adsorption mechanisms and in themeasurement of specific surface area in solids., J. Chem.Soc., 786, 3973-3993. http://dx.doi:10.1039/JR9600003973
  37. Zhang X. and Bai R. (2003)., Mechanisms and kinetics ofhumic acid adsorption onto chitosan-coated granules. J.Colloid., Interface Sci., 264, 30-38. http://dx.doi:10.1016/S0021-9797(03)00393-X.
  38. Chang M. and Juang R. (2004)., Adsorption of tannicacid, humic acid, and dyes from water using thecomposite of chitosan and activated clay., J. Colloid.Interface Sci., 278, 18-25. http://dx.doi:10.1016/j.jcis.2004.05.029.