International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Correlation of Cooking duration and Phytonutrient release in Vegetable

Author Affiliations

  • 1School of Biotechnology and Bioinformatics, D. Y. Patil University, Navi Mumbai, Maharashtra-400 614, India
  • 2School of Biotechnology and Bioinformatics, D. Y. Patil University, Navi Mumbai, Maharashtra-400 614, India
  • 3School of Biotechnology and Bioinformatics, D. Y. Patil University, Navi Mumbai, Maharashtra-400 614, India
  • 4School of Biotechnology and Bioinformatics, D. Y. Patil University, Navi Mumbai, Maharashtra-400 614, India
  • 5School of Biotechnology and Bioinformatics, D. Y. Patil University, Navi Mumbai, Maharashtra-400 614, India
  • 6School of Biotechnology and Bioinformatics, D. Y. Patil University, Navi Mumbai, Maharashtra-400 614, India

Res. J. Recent Sci., Volume 5, Issue (6), Pages 6-12, June,2 (2016)


The culinary arts across continents have provided a whole range of variant practices that now concentrate to contain the essential components of the nutriment used. Among the disparate healthy cooking practices, boiling is considered as a quick and effortless way for both preserving and extracting the water soluble vitamins. In this study, an attempt was carried out to correlate the extent of phytochemical release and antioxidant activity in raw and cooked food items. Common vegetables that form any part of appetizer, entrée or main course of food were targeted for this swot. Extracts obtained after 20 min of cooking showed increased phytochemical contents with corresponding free radical scavenging activity. Based on the targeted food samples an ideal cooking duration for each is recommended in accordance to their scavenging property.


  1. Liu R.H. (2003)., Health benefits of fruit and vegetables are from additive and synergistic combinations of phytochemicals., Am. J. Clin. Nutr., 78(3 Suppl), 517S–520S.
  2. Block G., Patterson, B. and Subar A. (1992)., Fruit, vegetables, and cancer prevention: a review of the epidemiological evidence., Nutr. Cancer, 18(1), 1–29.
  3. Kaur C. and Kapoor H.C. (2008)., Antioxidants in fruits and vegetables - the millennium’s health., Int. J. Food Sci. Technol., 36(7), 703–725.
  4. Hanif R., Iqbal Z. and Iqbal M. (2006)., Use of vegetables as nutritional food: Role in human health., J. Agric. Biol. Sci., 1(1), 18–22.
  5. Lintas C. (1992)., Nutritional aspects of fruits and vegetable consumption, in Options Mediterraennes., 19.
  6. Andrews S. (2009)., Food and Beverage Service- A Training Manual.,
  7. Konings E.J.M. (2006)., Water-soluble vitamins., J. AOAC Int., 89(1), 285–8.
  8. Prodanov M., Sierra I. and Vidal-Valverde C. (2004)., Influence of soaking and cooking on the thiamin, riboflavin and niacin contents of legumes., Food Chem., 84(2), 271–277.
  9. Krehl W.A. and Winters R.W. (1950)., Effect of cooking methods on retention of vitamins and minerals in vegetables., J. Am. Diet. Assoc., 26(12), 966–72.
  10. Ford J.E., Hurrell R.F. and Finot P.A. (1983)., Storage of milk powders under adverse conditions., Br. J. Nutr., 49 355–364.
  11. Sieber R., Eberhard P., Fuchs D., Gallmann, P.U. and Strahm W. (2009)., Effect of microwave heating on vitamins A, E, B1, B2 and B6 in milk., J. Dairy Res., 63(01), 169
  12. Watanabe F. et al. (1998)., Effects of microwave heating on the loss of vitamin B(12) in foods., J. Agric. Food Chem., 46(1), 206–210.
  13. Kataria A. and Chauhan B.M. (1988)., Contents and digestibility of carbohydrates of mung beans (Vigna radiata L.) as affected by domestic processing and cooking., Plant Foods Hum. Nutr., 38(1), 51–59.
  14. Bishnoi S. and Khetarpaul N. (1993)., Effect of domestic processing and cooking methods on in-vitro starch digestibility of different pea cultivars (Pisum sativum)., Food Chem., 47(2), 177–182.
  15. Choi Y., Lee S.M., Chun J., Lee H.B. and Lee J. (2006)., Influence of heat treatment on the antioxidant activities and polyphenolic compounds of Shiitake (Lentinus edodes) mushroom., Food Chem., 99(2), 381–387.
  16. Degl’ Innoocenti E., Pardossi A., Tattini M. and Guidi L. (2008)., Phenolic compounds and antioxidant power in minimally processed salad., J. Food Biochem., 32(5), 642–653.
  17. Souri E., Amin G., Farsam H. and Andaji S. (2004)., The antioxidant activity of some commonly used vegetables in Iranian diet., Fitoterapia, 75(6), 585–8.
  18. Xin Z. and Song K. (2004)., Antioxidant activity of salad vegetables grown in Korea., J. Food Sci. Nutr., 9(4), 289–294.
  19. Jahan I.A. et al. (2010)., Chemical and antioxidant properties of broccoli growing in Bangladesh., Dhaka Univ. J. Pharm. Sci., 9(1), 31–37.
  20. Riso P., Visioli F., Erba D., Testolin G. and Porrini M. (2004)., Lycopene and vitamin C concentrations increase in plasma and lymphocytes after tomato intake., Effects on cellular antioxidant protection. Eur. J. Clin. Nutr., 58(10), 1350–8.
  21. Chandra H.M. and Ramalingam S. (2011)., Antioxidant potentials of skin, pulp, and seed fractions of commercially important tomato cultivars., Food Sci. Biotechnol., 20(1), 15–21.
  22. Kaur C. and Kapoor H.C. (2002)., Anti-oxidant activity and total phenolic content of some Asian vegetables., Int. J. Food Sci. Technol., 37(2), 153–161.
  23. Podsedek A., Sosnowska D., Redzynia M. and Anders B. (2006)., Antioxidant capacity and content of Brassica oleracea dietary antioxidants., Int. J. Food Sci. Technol., 41(Supplement 1), 49–58.
  24. Halvorsen B.L. et al. (2002)., Nutrient Requirements A Systematic Screening of Total Antioxidants in Dietary Plants 1., J. Nutr., 132(September 2001), 461–471.
  25. Lenucci M.S., Cadinu D., Taurino M., Piro G. and Dalessandro G. (2006)., Antioxidant composition in cherry and high-pigment tomato cultivars., J. Agric. Food Chem., 54(7), 2606–2613.
  26. Ronald E. Wrolstad, Terry E. Acree, Haejung An, Eric A. Decker, Michael H. Penner, David S. Reid, Steven J. Schwartz, Charles F. Shoemaker, Denise M. Smith, Peter Sporns (2001)., Current Protocols in Food Analytical Chemistry Curr. Protoc., 1199, John Wiley and Sons, Inc., . doi:10.1002/0471142913,
  27. Chang C., Yang M.H., Wen H.M. and Chern J.C. (2002)., Estimation of total flavonoid content in propolis by two complementary colorimetric methods., J. food drug Anal., 10(3), 178–182.
  28. Shanmugam S., T.S.K. and Selvam K.P. (2010)., Laboratory Handbook on Biochemistry 141 (PHI Learning Pvt. Ltd.,. at
  29. Khanbabaee K. and Ree T. Van. (2001)., Tannins: Classification and Definition., R. Soc. Chem., 18 641–649.
  30. Duthie G.G., Gardner P.T. and Kyle J. a M. (2003)., Plant polyphenols: are they the new magic bullet?., Proc. Nutr. Soc., 62(3), 599–603.
  31. De la Lastra C.A. and Villegas I. (2005)., Resveratrol as an anti-inflammatory and anti-aging agent: mechanisms and clinical implications., Mol. Nutr. Food Res., 49(5), 405–30.
  32. Taguri T., Tanaka T. and Kouno I. (2004)., Antimicrobial Activity of 10 Different Plant Polyphenols against Bacteria Causing Food-Borne Disease., Biol. Pharm. Bull., 27(12), 1965–1969.
  33. Daglia M. (2012)., Polyphenols as antimicrobial agents., Curr. Opin. Biotechnol., 23(2), 174–81.
  34. Cheeke P.R. (1989)., Toxicants of Plant Origin: Alkaloids 352, Taylor and Francis. at ,
  35. Chen X., Nishida H. and Konishi T. (2003)., Baicalin promoted the repair of DNA single strand breakage caused by H2O2 in cultured NIH3T3 fibroblasts., Biol. Pharm. Bull., 26(2), 282–4.
  36. Cummings J. and Smyth J.F. (1989)., Flavone 8-acetic acid: our current understanding of its mechanism of action in solid tumours., Cancer Chemother. Pharmacol., 24(5), 269–272.
  37. Chauhan P.S., Satti N.K., Suri K.A., Amina M. and Bani S. (2010)., Stimulatory effects of Cuminum cyminum and flavonoid glycoside on Cyclosporine-A and restraint stress induced immune-suppression in Swiss albino mice., Chem. Biol. Interact., 185(1), 66–72
  38. Schümann J. et al. (2003)., Silibinin protects mice from T cell-dependent liver injury., J. Hepatol., 39(3), 333–340.
  39. Cushnie T.P.T. and Lamb A.J. (2005)., Antimicrobial activity of flavonoids., Int. J. Antimicrob. Agents, 26(5), 343–56.
  40. Yamamoto Y. and Gaynor R.B. (2001)., Therapeutic potential of inhibition of the NF-kappaB pathway in the treatment of inflammation and cancer., J. Clin. Invest., 107(2), 135–42.
  41. Ayoola G. et al. (2009)., Phytochemical screening and free radical scavenging activities of the fruits and leaves of Allanblackia floribunda Oliv (Guttiferae)., Int. J. Heal. Res., 1(2).
  42. Kawai M. et al. (2007)., Flavonoids and related compounds as anti-allergic substances., Allergol. Int., 56(2), 113–23
  43. García-Lafuente A., Guillamón E., Villares A., Rostagno M.A. and Martínez J.A. (2009)., Flavonoids as anti-inflammatory agents: implications in cancer and cardiovascular disease., Inflamm. Res., 58(9), 537–52.
  44. Hodek P., Trefil P. and Stiborová M. (2002)., Flavonoids-potent and versatile biologically active compounds interacting with cytochromes P450., Chem. Biol. Interact., 139(1), 1–21.
  45. Laks P.E. and Pruner M.S. (1989)., Flavonoid biocides: Structure/activity relations of flavonoid phytoalexin analogues., Phytochemistry, 28(1), 87–91.
  46. Harborne J.B. and Williams C.A. (2000)., Advances in flavonoid research since 1992., Phytochemistry, 55(6), 481–504. Halliwell B. (2009).
  47. Buettner G.R. (1993)., The pecking order of free radicals and antioxidants: lipid peroxidation, alpha-tocopherol, and ascorbate., Arch. Biochem. Biophys., 300(2), 535–43.
  48. Craig W.J. (1997)., Phytochemicals: Guardians of our Health., J. Am. Diet. Assoc., 97(10), S199–S204.
  49. Rao B.N. (2003)., Bioactive phytochemicals in Indian foods and their potential in health promotion and disease prevention., Asia Pac. J. Clin. Nutr., 12(1), 9–22.
  50. Zhang Y., Talalay P., Cho C.G. and Posner G.H. (1992)., A major inducer of anticarcinogenic protective enzymes from broccoli: isolation and elucidation of structure., Proc. Natl. Acad. Sci. U. S. A., 89(6), 2399–403.
  51. Raffo A. et al. (2002)., Nutritional Value of Cherry Tomatoes (Lycopersicon esculentum Cv. Naomi F1) Harvested at Different Ripening Stages., J. Agric. Food Chem., 50(22), 6550–6556.
  52. Moreno D.A., Pérez-Balibrea S., Ferreres F., Gil-Izquierdo Á. and García-Viguera C. (2010)., Acylated anthocyanins in broccoli sprouts., Food Chem., 123(2), 358–363.