International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Microalgae Culture for Bio-Fuel Production W.R.T. India: A Review

Author Affiliations

  • 1UIT, BU, Bhopal- 462026, MP, India

Res. J. Recent Sci., Volume 5, Issue (12), Pages 21-25, December,2 (2016)


Because of rapidly increasing consumption and limited sources of non-renewable fuels, Biofuel production from renewable sources is important now and futrue. Its production process is very much similar to Chemical process. Currently it is necessary to develop advanced biofuels besides other bio-products. Researchers look for the production of alternative fuels to replace petroleum derived fuels, including alcohols, higher chain alcohols isoprenoid lipid fuel, and fuels synthesized from CO2 via photosynthesis. The desire for renewable liquid fuel replacements to petroleum has steadily increased with concerns about the current fuel economy’s stability and environmental impact.


  1. Azapagic A. (2014)., Sustainability Considerations for Integrated Bio refineries., Trends In Biotechnology, January, 32(1).
  2. Carvalho A.P., Meireles L.A. and Malcata F.X. (2006)., Microalgal reactors: a review of enclosed system designs and performances., Biotechnology Progress, 22(6), 1490-1506.
  3. Michael C. (1999)., Shear sensitivity. In: Flickinger MC, Drew SW, editors. Encyclopedia of bioprocess technology: fermentation., Biocatalysis and bio separation, 5, 2379-406.
  4. Chisti Y. (2007)., “Biodiesel from microalgae”., Biotechnology Advances, 25(3), 294-306.
  5. Chisti Y. (2008)., Biodiesel from microalgae beats bioethanol., Trends Biotechnol, 26, 126-131.doi:10.1016/j.tibtech.2007.12.002
  6. Miyamoto K. (1997)., FAO Agricultural Services Bulletin-128., (chapter I- Biological Energy Production) [online]. Available:
  7. Garcı́a Camacho F., Molina Grima E., Sánchez Mirón A., González Pascual V. and Yusuf Chisti (2001)., Carboxymethyl cellulose protects algal cells against hydrodynamic stress., Enzyme Microbe Technol, 29, 602-610.
  8. Garcia Camacho F., Gallardo Rodríguez J., Sánchez Mirón A., Cerón García M.C., Belarb E.H., Chisti Y. and Molina Grima E. (2007)., Biotechnological significance of toxic marine dinoflagellates., Biotechnol Adv, 25, 176-94.
  9. Richmond A. (2008)., Handbook of micro algal culture., Biotechnology and applied phycology. Blackwell, 97-115.
  10. Humphrey A.S. (2004)., The origins of the SWOT analysis model., Obtained through the Internet:, [accessed 12/4/2014.
  11. Mazzuca S.T., Garcia C.F., Molina G.E. and Chisti Y. (2006)., Effects of agitation on the microalgae phaeodactylum tricornutum and porphyridium cruentum., Bioprocess Biosyst Eng, 28, 243-50.
  12. Mcardle W., Katch F. and Katch V. (2010)., Exercise physiology: nutrition, energy, and human performance., Lippinott Williams & Wilkins.
  13. Moheimani N.R. (2013)., Production of biofuels from microalgae., Asia Pacific Partnership [Online]. Available: [Accessed 04/04/2014].
  14. Emilio Molina Grima, Jose María, Fernández Sevilla, Francisco Gabriel Acién Fernández (2009)., Microalgae, mass culture methods., In: Flickinger M C, Drew S.W, editors. Encyclopaedia of bioprocess technology: fermentation. Biocatalysis and bio separation, 3, 1743-69.
  15. Molina G.E. (1999)., Acien Fernandez F.G., Garcia Camacho F, Chisti Y. Photo bioreactors: light regime, mass transfer and scale up., J. Biotechnol, 70, 231-47.
  16. Oligae (2010)., Oligae Report Academic Edition., Obtained through the Internet:, [accessed 10/04/2014].
  17. Paine R. and Vadas R. (1969)., Calorific values of benthic marine algae and their postulated relation to invertebrate food reference., Marine Biology, 4, 79-86.
  18. Pulz O. (2001)., “Photo bioreactors: production systems for phototrophic microorganisms”., Applied Microbiology and Biotechnology, 57(3), 287-293.
  19. Sanchez M.A., Ceron G.M.C., Contreras G.A., Garcia C.F., Molina G.E. and Chisti Y. (2003)., Shear stress tolerance and biochemical characterization of Phaeodactylum tricornutum in quasi steady-state continuous culture in outdoor photo bioreactors., Biochem Eng J., 16, 287-97.
  20. Spolaore P., Joannis C.C., Duran E. and Isambert A. (2006)., “Commercial applications of microalgae”., Journal of Bioscience and Bioengineering, 101(2), 87-96.
  21. Terry K.L. and Raymond L.P. (1985)., “System design for the autotrophic production of microalgae”., Enzyme and Microbial Technology, 7(10), 474-487.
  22. Tredici M.R. (1999)., Bioreactors, photo. In: Flickinger M C, Drew S W, editors. Encyclopedia of bioprocess Technology: fermentation, biocatalysis and bioseperation Wiley., 395-419.
  23. Ronald P. Corbett. (1999)., \"Up to speed\".,
  24. Eva D. and Ralf R. (2008)., Current achievements in the production of complex biopharmaceuticals with moss bioreactors., Bioprocess and Biosystems Engineering, 31(1), 3-9.
  25. Pulz O. (2001)., \"Photobioreactors: production systems for phototrophic microorganisms\"., 57, 287–293.
  26. Cotta F., Matschke M., Großmann J., Griehl C. and Matthes S. (2011)., “Verfahrenstechnische Aspekte eines flexiblen, tubulären Systems zur Algenproduktion”., (Process-related aspects of a flexible, tubular system for algae production); DECHEMA.
  27. Großmann Ingenieur Consult GmbH (2011)., Aufbau eines Biosolarzentrums in Köthen., 6. März 2011.
  28. Richmond A. and Hu Q. (2013)., Handbook of microalgal culture., Blackwell Science Ltd. ISBN 978-0-470-67389-8.
  29. Spolaore P. et al. (2006)., \"Commercial Applications of Microalgae\"., Journal of Bioscience and Bioengineering 102: 87–96.
  30. Ansari A., Rajwaidya R. and Amlathe S. (2015)., “Green Fuel: The Next Generation Eco-Friendly Algal Bio-Fuel”., Research Journal of Chemical Sciences, October 5(10), Issue 10, 28-32.