International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Antioxidative defense response of selenium by hyper accumulator plant Brassica rapa var. PS66 and Toria towards phytoremediation

Author Affiliations

  • 1 Department of P.G. Studies and Research in Biological Sciences, Rani Durgawati University, Jabalpur, MP, 482001, INDIA

Res. J. Recent Sci., Volume 4, Issue (IYSC-2015), Pages 136-143, September,2 (2015)

Abstract

Natural processes for instance volcanic eruptions and anthropogenic activities lead to emission of heavy metals in ecosystem. Brassica species have competency to absorb and sequester Se and harness to manage environmental Se contamination via phytoremediation. All the test species of Brassica were found to respond to Se by registering changes in the expression of antioxidative enzymes, and tolerance level showed significant inhibition at higher concentration. The raised value of oxidative stress determinants - lipid peroxidation and hydrogen peroxide, near 100µM signified build up of stress at this concentration. Brassica rapa showed greater Se tolerance as was evident from the increased expression of glutathione peroxidase (GPX) in the treated plants, results corroborated with in gel assays for the enzymes, whereas little or no basal activity was found in the control plants. The positive tie-up between Se enhancement and GPX activity is suggestive for the existence of Se-dependent GPX despite the fact that most plant GPX studied so far have not been reported to require Se for their function. One noteworthy attribute of Brassica rapa PS66 and Toria have adequacy to transform inorganic Se to volatile forms, principally dimethylselenide (DMSe), which is 500-600 times less toxic than the available form of selenium in the environment, thus a prospect benefit for selenium phytoremediation.

References

  1. Lu J. and Holmgren A., Selenoproteins, J. Biol. chem., 284, 723-727 (2009)
  2. Terry N. Zayed A.M. De Souza M.P. Tarun A.S., Selenium in higher plants, Annu. Rev. Plant Physiol. Plant Mol. Biol., 51, 401 – 432 (2000)
  3. Arvy M.P., Selenate and selenite uptake and translocation in bean plants (Phaseolus vulgaris), J. Exp. Bot., 44, 1083–1087 (1993)
  4. Ellis D.R. Sors T.G. Brunk D.G. Albrecht C. Orser C. Lahner B. Wood K.V. Harris H.H. Pickering I.J. Salt D.E., Production of Semethylselenocysteine in transgenic plants expressing selenocysteine methyltransferase, BMC Plant Biol.,, 1 (2004)
  5. Sors T.G. Ellis D.R. Na G.N. Lahner B. Lee S. Leustek T. Pickering I.J. Salt D.E., Analysis of sulfur and selenium assimilation in Astragalus plants with varying capacities to accumulate selenium, Plant J., 42, 785–797 (2005)
  6. Cartes P., Gianfreda L. and Mora M.L., Uptake of selenium and its antioxidant activity in ryegrass when applied as selenate and selenite forms, Plant Soil.,276, 359–367 (2005)
  7. A. Krieger-Liszkay., Singlet oxygen production in photosynthesis, J. Exp. Bot., 56, 337–346 (2005)
  8. Ahmad P., Sarwat M. and Sharma S., Reactive oxygen species, antioxidants and signaling in plants, J. Plant Biol., 51, 167–173 (2008)
  9. Herbette S., Roeckel-Drevet P. and Drevet J.R., Seleno-independent glutathione peroxidases more than simple antioxidant scavengers, FEBS J., 274, 2163–2180 (2007) , 136-143 (2015)
  10. Miao Y. Lv D. Wang P. Wang X.C. Chen J. Miao C., AnArabidopsis glutathione peroxidase functions as both a redox transducer and a scavenger in abscisic acid and drought stress responses, Plant Cell., 18, 2749–2766 (2006)
  11. Pilon-Smits E.A.H. Quinn C.F., Selenium Metabolism in Plants, In: “Cell Biology of Metal and Nutrients”, Hell R.,Mendel R., eds., 225-241 (2009)
  12. Lee MY. and Shin HW., Cadmium-induced changes in antioxidant enzymes from the marine alga Nannochloropsis oculata, J. Appl. Phycol., 15, 13-19 (2003)
  13. Israr M. Sahi S.V. and Jain J., Cadmium Accumulation and Antioxidative Responses in the Sesbania drummondiicallus, Arch. Environ. Contam. Toxicol., 50, 121–127 (2006)
  14. Anderson M.E., Determination of glutathione and glutathione disulfide in biological samples, Methods Enzymol., 113, 548-555 (1985)
  15. Wang Z., Zhang Y., Huang Z. and Huang L., Antioxidative response of metal-accumulator and nonaccumulator plants under cadmium stress, Plant Soil., 310, 137-149 (2008)
  16. Lowry .H., Rosebrough .J., Farr A.L. and Randall R.J., Protein measurement with the Folin phenol reagent, J. Biol. Chem., 193, 265-275 (1951)
  17. Laemmli U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 227: 680-685 (1970)
  18. Aebi M., Catalase in vitro, Methods Enzymol.,105, 121–126 (1984)
  19. Hirsch P., Overrein L. and AlexanderM., Formation of nitrite and nitrate by actinomycetes and fungi, J. Bacteriol., 82, 442–448 (1961)
  20. Tözüm SRD and Gallon JR., The effect of methyl viologen on Gloeocapsa sp. LB795 and their relationship to the inhibition of acetylene reduction (nitrogen fixation) by oxygen, J .Gen. Microbiol., 111, 313–326 (1979)
  21. Woodbury W., Spencer A.K. and Stahmann M.A., An improved procedure using ferricyanide for detectingcatalase isozymes, Anal. Biochem., 44, 301-305 (1971)
  22. Mittler R. and Zilinskas B.A., Detection of ascorbate peroxidase activity in native gels by inhibition of the ascorbate- dependent reduction of nitroblue tetrazolium, Anal. Biochem., 212, 540-546 (1993)
  23. Kankofer M., Superoxide dismutase and glutathione peroxidase activities in bovine placenta: spectrophotometric and electrophoretic analysis, Rev. Méd. Vét., 153, 121-124 (2002)
  24. Gomes-Junior R.A., Gratao P.L., Gaziola S.A., Mazzafera P., Lea P.J. and Azevedo R.A., Selenium-induced oxidative stress in coffee cell suspension cultures, Funct. Plant Biol., 34, 449–456 (2007)
  25. Tamaoki M., Freeman J.L. and Pilon-Smits E.A.H., Cooperative ethylene and jasmonic acid signaling regulates selenite resistance in Arabidopsis thaliana Plant Physiol., 146, 1219-1230 (2008)
  26. Tamaoki M., Freeman J.L., Marques L. and Pilon-Smits E.A.H., New insights into the role of ethylene and jasmonic acid in the acquisition of selenium resistance in plants, Plant Signal. Behav., 3, 865-867 (2008b)
  27. Freeman J.L., Tamaoki M., Stushnoff C., Quinn C.F.,Cappa J.J., Devonshire J., Fakra S.C., Marcus M.A.,McGrath S.P. and Van Hoewyk D., Molecular mechanisms of selenium tolerance and hyperaccumulation in Stanleya pinnata, Plant Physiol., 153, 1630–1652 (2010)
  28. Y. Yang, C. Han, Q. Liu, B. Lin and J. Wang., Effect of drought and low light on growth and enzymatic antioxidant system of Picea asperata seedlings, Acta Physiol. Plant., 30, 433–440 (2008)
  29. Xue T., Hou S. and Tan J., The antioxidative function of selenium in higher plants: The inhibitive effect of selenium on lipid peroxidation and its enzymatic mechanism, Chin. Sci. Bull., 38, 274–277 (1993)
  30. Hartikainen H., Ekholm P., Piironen V., Xue T, Koivu T. and Yli-Halla M., Quality of the ryegrass and lettuce yields as affected by selenium fertilization, J. Agr. Food Sci., 6, 381–387 (1997)
  31. Sabeh F., Wright T. and Norton S.J., Purification and characterization of a glutathione peroxidase from the Aloe vera plant, Enzyme Prot., 47(2), 92–98 (1993)
  32. Huang K.X. Lauridsen E. and Clausen J.,Selenium-containing peroxidases of germinating barley, Biol. Trace Elem. Res., 46, 173–182 (1994)
  33. Fu L.H., Wang X.F., Eyal Y., She Y.M., Donald L.J.,Standing K.G. and Ben-Hayyim G., A selenoprotein in the plant kingdom: mass spectrometry confirms that an opal codon (UGA) encodes selenocysteine in Chlamydomonas reinhardtii glutathione peroxidase, J. Biol. Chem., 277, 25983- 2599 (2002)
  34. Djanaguiraman M., Durga Devi D., Shanker A.K., Sheeba J.A. and Bangarusamy U., Selenium – an antioxidative protectant in soybean during senescence, Plant Soil., 272: 77–86 (2005)
  35. Noctor G. and Foyer C.H., Ascorbate and glutathione: keeping active oxygen under control, Annu. Rev. Plant Physiol. Plant Mol. Biol., 49, 249–279 (1998)