International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Combination of HEC-HMS and HEC-RAS models in GIS in order to Simulate Flood (Case study: Khoshke Rudan river in Fars province, Iran)

Author Affiliations

  • 1 Torbat-e-Jam Branch,Islamic Azad University, Torbat-e-Jam, IRAN

Res. J. Recent Sci., Volume 4, Issue (8), Pages 122-127, August,2 (2015)

Abstract

Residential and urban development in flood plains beds and riverbanks, regardless of hydrological and hydraulic conditions governing watershed and river, on the one hand, increase the risk of flooding and on the other hand, loss of investment in this area. In the present study to investigate the behavior of the rivers flood and how to expand its range in a reach of khoshke Rudan river, located in the Chaharmahal and Bakhtiari province, it was used from the integration of HEC-HMS hydrological and HEC-RAS hydraulic model. HEC-HMS model was calibrated for the study area by surveying of the cross sections of the rive using the rain gauge and rainfall gauging stations of the neighboring basins. Flood zones associated precipitations with periods of 10, 20, 50 and 100 years was determined by using HEC-GeoRAS extension in GIS environment. The results obtained from the study confirmed the high efficiency of the combination of GIS and HEC-RAS model and while provening the performance the model, recommend its application in program planning and management of residential and agricultural areas.

References

  1. Knebl M.R., Yang Z.L., Hutchison K. and Maidment D.R., Regional scale flood modeling using NEXRAD rainfall, GIS, and HEC-HMS/RAS: a case study for the San Antonio River Basin Summer 2002 storm event, Journal of Environmental Management, 75, 325–336 (2005) Doi:10.1016/j.jenvman.2004.11.024, (2005)
  2. Townsend P.A. and Walsh S.J., Modeling floodplain inundation using an integrated GIS with radar and optical remote sensing, Geomorphology, 21(3-4), 295–312 (1998) Doi: 10.1016/s0169-555x (97)00069-x, (1998)
  3. Dutta D., Herath S. and Musiake K., Flood inundation simulation in a river basin using a physically based distributed hydrologic model, Hydrological Processes,14(3), 497–519 (2000) DOI: 10.1002/ (SICI) 1099-1085(20000228), (2000)
  4. Dolcine L., Andrieu H., Sempre-Torres D. and Creutin D., Flash flood forecasting with coupled precipitation model in mountainous Mediterranean basin, Journal of Hydrologic Engineering,6(1), 1–10 (2001) Doi: 10.1061/ (ASCE) 1084-0699(2001) 6:1(1)), (2001)
  5. Sheng Y., Gong P. and Xiao Q., Quantitative dynamic flood monitoring with NOAA AVHRR, International Journal of Remote Sensing,22(9), 1709–1724 (2001) DOI: 10.1080/01431160118481, (2001)
  6. Bryant R.G. and Rainey M.P., Investigation of flood inundation on playas within the Zone of Chotts, using a time-series of AVHRR, Remote Sensing of Environment,82(2-3), 360–375 (2002) Doi: 10.1016/S0034-4257(02)00053-6, (2002)
  7. Lee K.S. and Lee S.I., Assessment of post-flooding conditions of rice fields with multi-temporal satellite SAR data, International Journal of Remote Sensing,24(17), (2003) 3457–3465 DOI: 10.1080/ 0143116021000021206, (2003)
  8. Hudson P.F. and Colditz R.R., Flood delineation in a large and complex alluvial valley, lower Panuco basin, Mexico, Journal of Hydrology,280, 229–245 (2003) DOI: http://dx.doi.org/ 10.1016/S0022-1694(03) 00227-0, (2003)
  9. Li Z., Liu W., Zhang X. and Zheng F., Impacts of land use change and climate variability on hydrology in an agricultural catchment on the Loess Plateau of China, Journal of Hydrology, Elsevier, 377, 35-42 (2009) Doi:10.1016/j.jhydrol.2009.08.007, (2009)
  10. Brath A., Montanari A. and Moretti G., Assessing the effect on flood frequency of land use change via hydrological simulation (with uncertainty), Journal of Hydrology,324(1–4), 141–153 (2006) DOI: 10.1016/j.jhydrol. 2005.10.001, (2006)
  11. Wang G.X., Zhang Y., Liu G.M. and Chen L., Impact of land-use change on hydrological processes in the Maying River basin, China, Science in China Series D: Earth Sciences, 49(10), 1098–1110 (2006) DOI: 10.1007/s11430-006-1098-6, (2006)
  12. Costa M.H., Botta A. and Cardille J.A., Effects of large-scale changes in land cover on the discharge of the Tocantins River, Southeastern Amazonia, Journal of Hydrology, 283, 206–217 (2003) Doi: 10.1016/S0022-1694(03)00267-1, (2003)
  13. Bedient P.B., Holder A., Benavides J.A. and Vieux B.E., Radar-based flood warning system applied to tropical storm Allison, Journal of Hydrologic Engineering,8(6), 308–318 (2003) DOI: 10.1061/ (ASCE) 1084-0699, (2003)
  14. Bates P.D., Remote sensing and flood inundation modeling, Hydrological Processes,18, 2593–2597 (2004) DOI: 10.1002/hyp.5649, (2004)
  15. Bates P.D. and De Roo A.P.J., A simple raster-based model for flood inundation simulation, Journal of Hydrology,236(1–2), 54–77 (2000) Doi: 10.1016/S0022-1694(00)00278-X, (2000)
  16. Sanders B.F., Evaluation of on-line DEMs for flood inundation modeling, Advances in Water Resources, 30(8), 1831–1843 (2007) Doi:10.1016/j.advwatres. 2007.02.005, (2007)
  17. Adarsa J., Shamina S. and Arkoprovo B., Morphological Change Study of Ghoramara Island, Eastern India Using Multi Temporal Satellite Data, Res. J. Recent Sci., 1(10), 72-81 (2012)
  18. Manimaran D., Groundwater geochemistry study using GIS in and around Vallanadu Hills, Tamilnadu, India, Res. J. Recent Sci., 1(6), 32–37 (2012)
  19. Biswas A., Jana A. and Sharma S.P., Delineation of groundwater potential zones using satellite remote sensing and geographic information system techniques: A case study from ganjam district, Orissa, Res. J. Recent Sci, 1(9), 59– 66 (2012)
  20. Mayavan N. and Sundaram A., Statistical Analysis for Landslide in Relation to Land use, In Sirumalai Hill, Dindigul District, Tami Nadu, India, using GI Technologies, Res. J. Recent Sci.,1(12), 36– 39 (2012)
  21. Saher F.N., Nasly M.A., Abdul Kadir T.A.B., Yahaya N.K.E.M. and Wan Ishak W.M.F., Harnessing Floodwater of Hill Torrents for Improved Spate Irrigation System Using Geo-Informatics Approach, Res. J. Recent Sci.,3(1), 14– 22 (2014)
  22. Smith P., Hydrologic Data Development System, Master Thesis, Department of Civil Engineering, University of Texas at Austin (1995)
  23. Kang, S.H., Tight coupling UFM ArcGIS for simulating inundation depth in densely area, Nat. Hazards Earth Syst. Sci.,10, 1523–1530 (2010) Doi: 10.5194/nhess-10-1523-2010, (2010)
  24. Brownlie, W.R., Flow Depth in Sand-Bed Channels. Journal of Hydraulic Engineering, ASCE, 109(7), 959-990 (1983) Doi: 10.1061/ (ASCE) 0733-9429, (1983)
  25. Lee, A.J. and Ferguson, R.I., “Velocity and flow resistance in step-pool streams,” Geomorphology, 46, 59- 71 (2002) Doi: 10.1016/S0169-555X (02)00054-5, (2002)
  26. Amengual A., Diomede T., Marsigli C., Martin A., Morgillo A., Romero R., Papetti P. and Alonso S., A hydro- meteorological model inter-comparison as a tool to quantify the forecast uncertainty in a medium size basin, Nat. Hazards Earth Syst. Sci.,8, 819–838 (2008) www.nat-hazards-earth-syst-sci.net/8/819/2008/, (2008)
  27. Chow V.T., Maidment D.R. and Mays L.W., Applied Hydrology, McGraw-Hill, New York, (1988)
  28. Mohseni M. and Solimani K., Flood Hazard Zonation Using Hydraulic Model of HEC-RAS in GIS, (2005) http://www.gisdevelopment.net/application/natural_hazards/floods/ma06_181.htm, (2005)
  29. Cowan W.L., Estimating Hydraulic Roughness Coefficients, Agricultural Engineering, ASAE, August, (1956)
  30. Jarvela, J., Effect of Submerged Flexible vegetation on Flow Structure and Resistance, Journal of Hydrology, Elsevier, 307 (2005) Doi: 10.1016/j.jhydrol.2004.10.013, (2005)
  31. Nepf, H.M., Drag, Turbulence, and Diffusion in Flow through Emergent Vegetation, Water Resources Research, AGU,35(2) (1999) DOI: 10.1029/1998WR900069, (1999)
  32. Wilson, C.A.M.E., Flow Resistance models for Flexible Submerged Vegetation, Journal of Hydrology, Elsevier,342, 213-222 (2007) Doi: 10.1016/j.jhydrol.2007.04.022, (2007)
  33. Walden, M.G., Estimation of average stream velocity, Journal of Hydraulic Engineering,130(11), 1119- 1122 (2004) Doi: 10.1061/ (ASCE) 0733-9429(2004) 130:11(1119) , (2004)
  34. Tate, E.C., Floodplain mapping using HEC-RAS and ArcView GIS, Master’s Thesis, Department of Civil Engineering, University of Texas at Austin. 137., (1998)
  35. Radwan, A., Flood Analysis and Mitigation for Area in Jordan, J. of Water Resources and Manag,125(3), 170-177 (1999) DOI: 10.1061/ (ASCE) 0733-9496(1999) 125:3(170), (1999)
  36. Sommer, T., Karpf, C., Ettrich, N., Haas, D., Weichel, T., Peetz, J.V., Steckel, B., Eulitz, K. and Ullr, K., Coupled modelling of subsurface water flux for an integrated flood risk management, Nat. Hazards Earth Syst. Sci.,, 1277–1290 (2009)www.nat-hazards-earth-syst-sci.net/9/1277/2009/, (2009)
  37. Horritt, M.S. and Bates, P.D., Evaluation of 1D and 2D numerical models for predicting river flood inundation, Journal of Hydrology,268, 87–99 (2002) Doi: 10.1016/S0022-1694(02)00121-X, (2002)
  38. Yerramilli, S., A Hybrid Approach of Integrating HEC-RAS and GIS towards the Identification and Assessment of Flood Risk Vulnerability in the City of Jackson, MS, American Journal of Geographic Information System,1(1), 7-16 (2012) doi: 10.5923/j.ajgis.20120101.02, (2012)