5th International Young Scientist Congress (IYSC-2019).  International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

A Sieve Bootstrap approach to constructing Prediction Intervals for Long Memory Time series

Author Affiliations

  • 1Department of Statistics, Islamia College University Peshawar, PAKISTAN
  • 2Department of Statistics, University of Peshawar, Peshawar, PAKISTAN

Res. J. Recent Sci., Volume 4, Issue (7), Pages 93-99, July,2 (2015)

Abstract

This paper is concerned with the construction of bootstrap prediction intervals for autoregressive fractionally integrated moving-average processes which is a special class of long memory time series. For linear short-range dependent time series, the bootstrap based prediction interval is a good nonparametric alternative to those constructed under parameter assumptions. In the long memory case, we use the AR-sieve bootstrap which approximates the data generating process of a given long memory time series by a finite order autoregressive process and resamples the residuals. A simulation study is conducted to examine the performance of the AR-sieve bootstrap procedure. For the purpose of illustration a real data example is also presented.

References

  1. Thombs L.A. and Schucany W.R., Bootstrap prediction intervals for autoregression, J. Amer. Statist. Assoc., 95,486-492, (1990)
  2. Masarotto G., Bootstrap prediction intervals for autoregression. Internat, J. Forecasting , 6, 229-329 (1990)
  3. Grigoletto M., Bootstrap prediction intervals for autoregressions: some alternatives, International Journal of Forecasting, 14, 447-456 (1998)
  4. Cao R., Febrero-Bande M., Gonzalez-Manteiga W., Prada-Sanchez J.M. and Garcya-Jurado I., Saving computer time in constructing consistent bootstrap prediction intervals for autoregressive processes, Comm. Statist. Simul Comput., 26, 961-978 (1997)
  5. Pascual L, Romo J and Ruiz E., Bootstrap predictive inference for ARIMA processes. ,Universidad Carlos III de Madrid, Madrid, W.P. 98-86 (1998)
  6. Clements M.P. and Kim J.H. Bootstrap prediction intervals for autoregressive time series, Comput. Statist and Data Analysis, 51, 3580-3594 (2007)
  7. Alanso A.M., Pena D. and Romo J., Forecasting time series with sieve bootstrap, J. Statist. Planing Inference, 100, 1-11 (2002)
  8. Alanso A.M., Pena D. and Romo J., On sieve bootstrap prediction intervals, Statistics and Probability Letters, 65,13-20 (2003)
  9. Alanso A.M., Pena D. and Romo J., Introducing Model Uncertainty in Time Series Bootstrap, Statistica Sinica, 14, 155-174 (2004)
  10. Beran J., Statistics for long memory process, Chapman and Hall, New York (1994)
  11. Baillie R.T., Long Memory Process and Fractional Integration in Econometrics. Journal of Econometrics, 71,5-59 (1996)
  12. Bisaglia L and Grigoletto M., 'Prediction intervals for farima processes by bootstrap methods', Journal of Statistical Computation and Simulation, 68(2), 185-201 (2001)
  13. Amjad A., Shao X. and Salahuddin, A Sieve Bootstrap Approach to Constructing Prediction Intervals of Long Memory Time Series, Proceedings of JSM, (2009)
  14. Rupasinghe M., Mukhopadhyay P. and Samaranayake V.A., Obtaining Prediction Intervals for FARIMA Processes Using the Sieve Bootstrap, Proceedings of JSM, (2011)
  15. Kreiss J.P., Bootstrap procedures for ¥AR-processes. In K.H. Jöckel, G. Rothe and W. Sender (eds), Bootstrapping and Related Techniques, Lecture Notes in Economics and Mathematical Systems 376. Heidelberg: Springer, (1992)
  16. Buhlmann P., Sieve bootstrap for time series, Bernoulli, 3,123-148 (1997)
  17. Poskitt D.S., Properties of the Sieve Bootstrap for Fractionally Integrated and Non-Invertible Processes, Journal of Time Series Analysis, 29(2), 224-250 (2007)
  18. Granger C.W.J. and Joyeux R., An Introduction to Long-Memory Time Series Models and Fractional Differencing, Journal of Time Series Analysis, 1, 15-29 (1980)
  19. Hosking J.R.M., Fractional Differencing, Biometrika, 68,165-176 (1981)
  20. Bhansali R.J., A simulation study of autoregressive and window estimators of the inverse autocorrelation function,Appl. Statist., 32, 141–149 (1983)