6th International Young Scientist Congress (IYSC-2020) will be Postponed to 8th and 9th May 2021 Due to COVID-19. 10th International Science Congress (ISC-2020).  International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Characterization of Organic and Elemental Carbon in PM2.5 Aerosols at Agra, India

Author Affiliations

  • 1 Dayalbagh Educational Institute, Dayalbagh, Agra 282 110, INDIA

Res. J. Recent Sci., Volume 2, Issue (ISC-2012), Pages 255-260, February,2 (2013)

Abstract

PM2.5 samples were collected from May 2010 to April 2011 and were analyzed for OC (Organic carbon) and EC (Elemental carbon) using thermal optical transmittance (TOT) protocol. The results showed that the annual average concentration of PM2.5 was 79.7 ± 40.5 μg/m3 . In PM2.5, OC and EC concentrations were 22.8 ± 17.1 and 3.4 ± 1.2 μg/m3. Both OC and EC exhibited a clear seasonal pattern with highest concentration observed in winter followed by summer and monsoon which may be due to the combined effect of changes in emission rates and different meteorology in various seasons. TCA (Total carbonaceous aerosol) accounted for an averaged 50.3% of PM2.5 mass. The annual average OC/EC ratio was 6.6 which is similar ratio for biomass burning emissions.

References

  1. Seinfeld J.H., Pandis S.N., Atmospheric chemistry and physics: from air pollution to climate change, John Wiley and Sons, New York (1998)
  2. Mkoma S.L., Chi X. and Maenhaut W., Characteristics of carbonaceous aerosols in ambient PM10 and PM2.5 particles in Dar es Salaam, Tanzania, Sci. of Total Environ., 408, 1308–1314 (2010)
  3. Chameides W.L., Yu H., Liu S.C., Bergin M., Zhou X. and Mearns L., Case study of the effects of atmospheric aerosols and regional haze on agriculture: An opportunity to enhance crop yields in China through emission controls, Proceedings of the National Academy of Science of the United States of America, 96, 13626–13633 (1999)
  4. Ramanathan V., Crutzen P.J., Lelieveld J., Mitra A.P., Althausen D. and Anderson J., Indian ocean experiment: An integrated analysis of the climate forcing and effects of the great Indo-Asian haze, J. Geophys. Res., 106, 28371–28398 (2001)
  5. Li W. and Bai Z., Characteristics of organic and elemental carbon in atmospheric fine particles in Tianjin, China, Particuology, 7, 432–437 (2009)
  6. Birch M.E. and Cary R.A., Elemental carbon-based method for monitoring occupational exposures to particulate diesel exhaust: methodology and exposure issues, The Analyst, 121, 1183–1190 (1996)
  7. Central Pollution Control Board, National Ambient Air Quality Standards, New Delhi, India (1994)
  8. Feng J., Chan C.K., Fang M., Hu M., He L. and Tang X., Characteristics of organic matter in PM2.5 in Shanghai, Chemos., 64, 1393–1400 (2006)
  9. Feng Y., Chen Y., Guo H., Zhi G., Xiong S., Li J., Sheng G. and Fu J., Characteristics of organic and elemental carbon in PM2.5 samples in Shanghai, China, Atmos. Res., 92, 434 –442 (2009) , 255-260 (2013)
  10. Lonati G., Ozgen S. and Giugliano M., Primary and secondary carbonaceous species in PM2.5 samples in Milan (Italy), Atmos. Environ., 41, 4599–4610 (2007)
  11. Viidanoja J., Sillanpaa M., Laakia J., Kerminen V.M., Hillamo R., Aarnio P. and Koskentalo T., Organic and black carbon in PM2.5 and PM10: 1 year of data from an urban site in Helsinki, Finland, Atmos. Environ., 36, 3183–3193 (2002)
  12. Yang H., Yu J.Z., Ho S.S.H., Xu J., Wu W-S., Wan C.H., Wang X. and Wang L., The chemical composition of inorganic and carbonaceous materials in PM2.5 in Nanjing, China, Atmos. Environ., 39: 3735–3749 (2005)
  13. Khan M. F., Shirasuna Y., Hirano K. and Masunaga S., Characterization of PM 2.5, PM2.5 – 10, and PM�10 in ambient air, Yokohama, Japan, Atmos. Res., doi: 10.1016/j. atmosres.2009.12.009 (2010)
  14. Ram K. and Sarin M.M., Day – night variability of EC, OC, WSOC and inorganic ions in urban environment of Indo – Gangetic Plain: Implications to secondary aerosol formation, Atmos. Environ., doi: 10. 1016 / j. atmosenv. 2010.09.055 (2010)
  15. Turpin B.J. and Huntzicker J.J., Identification of secondary organic aerosol episodes and quantification of primary and secondary organic aerosol concentrations during SCAQS, Atmos. Environ., 29, 3527–3544 (1995)
  16. Cao J J, Lee S C, Ho K F, Zhang X Y, Zou S C, Fung K, Chow J C, Watson J G, Characteristics of carbonaceous aerosol in Pearl River Delta Region, China during 2001 winter period, Atmos. Environ., 37, 1451–1460 (2003)
  17. Gu J., Bai Z., Liu A., Wu L., Xie Y., Li W., Dong H. and Zhang X., Characterization of atmospheric organic carbon of PM2.5 and PM10 at Tianjin, China, Aer. Air Quality Res., 10, 167–176 (2010)
  18. Andreae M.O. and Merlet P., Emission of trace gases and aerosols from biomass burning, Global Biogeo. Cycles, 15, 955–966 (2001)
  19. Chow J.C., Watson J.G., Lu Z., Lowenthal D.H., Frazier C.A., Solomon P.A., Thuillier R.H. and Magliano K., Descriptive analysis of PM2.5 and PM10 at regionally representative locations during SJVAQS/AUSPEX, Atmos. Environ., 30, 2079–2112 (1996)
  20. Castro L.M., Pio C.A., Harrison R.M. and Smith D.J.T., Carbonaceous aerosol in urban and rural European atmospheres: Estimation of secondary organic carbon concentrations, Atmos. Environ., 33, 2771–2781 (1999)
  21. Park S.S., Kim Y.J. and Fung K., Characteristics of PM2.5 carbonaceous aerosol in the Sihwa industrial area, Korea, Atmos. Environ., 35, 657–665 (2001)
  22. Draxler R.R., Rolph G.D., HYSPLIT Model Acess via NOAA ARL READY). NOAA Air Resources Laboratory, Silver Spring, MD http://www.arl.noaa.gov/ ready/hysplit4.html 2003 (2003)