6th International Young Scientist Congress (IYSC-2020) will be Postponed to 8th and 9th May 2021 Due to COVID-19. 10th International Science Congress (ISC-2020).  International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Growth and Characterization of Cobalt Sulphide Nanorods

Author Affiliations

  • 1 Department of Physics, Gandhigram Rural Institute, Deemed University, Gandhigram, Dindigul District, TamilNadu, INDIA

Res. J. Recent Sci., Volume 2, Issue (ISC-2012), Pages 102-105, February,2 (2013)

Abstract

Uniformly distributed cobalt sulphide (CoS) nanorods with diameter of 139nm and 0.7µm long have been synthesized by using inexpensive chemical precipitation method. The X-ray powder diffraction study has shown the amorphous nature of the as prepared CoS nanorods. The scanning electron microscope reveals the morphology of the nanorods having nearly spherical head and elongated to flat tail tip just similar to nail shape. These kinds of structure are useful in laser and field emission applications. The analysis of EDAX has shown the presence of nearly equal percentage of cobalt and sulphur along with oxygen peak. This shows the formation of cobalt sulphide with slight hydrous nature. The hydrous nature is confirmed by FTIR study which has shown the presence of O-H bond. The UV-VIS transmission spectrum of CoS nanorods shows high absorption in the ultra-violet region at about 350nm which makes the material to be suitable for UV filters. The room temperature photoluminescence at excitation wavelength of 320nm exhibits two bands of which one violet emission observed at 413nm is broad and other blue emission band at 493nm is comparatively sharp. These two emissions are originated from Co vacancy related defects or their complexes.

References

  1. Jun Zhou, Young Ding, Shao Z. D-eng, Li Gong, Ning S.Xu and Zhong L. wang Three –Dimensional Tungsten Oxide Nanowire networks, Adv.mater, 17, 2107-2110 (2005)
  2. Hu J.T., Odom T.W. and Lieber C.M., Chemistry and Physics in One Dimension: Synthesis and Properties of Nanowires and Nanotubes, Acc. Chem. Res., 32, 435-445(1999)
  3. Wu Y. and Yang P., Germanium nanowire growth via simple vapor transport, Chem. Mater., 12, 605-607 (2000)
  4. Yazawa M., Koguchi M., Mutto A., Ozawa M. and Hiruma K., Effect of one monolayer of surface gold atoms on the epitaxial growth of In As nanowhiskers, Appl. Phys. Lett., 61, 2051-2053(1992)
  5. Chen C.C. and Yeh c., Large-Scale Catalytic Synthesis of Crystalline Gallium Nitride Nanowires, Adv. Matter. 12, 738-741 (2000)
  6. Karthik Ramasamy, Weerakanya Maneerprakorn, Mohammad A. Malik and Paul O’ Brien, Single-molecule precursor-based approaches to cobalt sulphide nanostructures, Phil. Trans. R. Soc. A368, 4249-4260 (2010)
  7. Smith G.B., Ignatiev A. and Zajac G. Solar selective black cobalt : preparation, structure and thermal stability, J. Appl. Phys. 51, 4186-4197 (1980)
  8. Whitney T.M., Jiang J.S., Searson P. and Chien C., Fabrication and magnetic properties of arrays of metallic nanowires, Science, 261, 1316-1319 (1993)
  9. Yue G.H., Yan P.X., Fan X.Y., Wang M.X., Qu D.M., Wu Z.G., Li C. and Yan D, Structures and properties of Cobalt disulphide nanowire arrays fabricated by electrodeposition, Electrochem., Solid State lett., 10, D29-D30 ( 2007)
  10. Feng Y.G., He T. and Alonso-Vante N. In situ free-surfactant synthesis and ORR-electrochemistry of carbon-supported Co3S4 and CoSe2 nanoparticles, Chem. Mater. 20, 26-28 (2008)
  11. Yu Z., Du J., Guo S., Zhang J. and Matsumoto Y., CoS thin films prepared with modified chemical bath deposition, Thin Solid Films, 415, 173-176 (2002)
  12. Cruz-Vazquez C., Inoue M., Inoue M.B., Bernal R. and Espinza _Beltran F.J., Electrical and spectroscopic properties of amorphous copper sulfide films treated with iodine, lithium iodide and sodium iodide, Thin Solid Films , 373, 1 -5 (2000)
  13. Ortega-Borges R., Lincott D., Mechanism of Chemical Bath Deposition of Cadmium Sulfide Thin Films in the AmmoniaThiourea System: In Situ Kinetic Study and Modelization, J. Electrochem. Soc. 140, 3464-3473 (1993)
  14. Deshmukh L.P. and Holikatti S.G., A CdS:Sb photoelectrode for photoelectrochemical applications, J. Phys. D: Appl. Phys., 27, 1786 -1790 (1994)
  15. Basu P.K. and Pramani K.P., Chemical deposition of thin film of CoS, J. Mater. Sc i: Lett., 5, 1216-1218 (1986)
  16. Donald Okli N. and Cecilia okoli N., Optical growth and characterization of cobalt sulphide Thin films Fabricated using the chemical Bath Deposition Technique, J. Natural Sci. Res., 2, 5-8 (2012)
  17. Deshmukh L.P. and Mane S.T., Liquid Phase Chemical deposition of Cobalt Sulphide Thin Films: Growth and properties, Digest J. Nano materials and Biostructures, 6, 931-936 (2011)
  18. Sifuentes C., Ybarmenkov, Strodumov A., Filipov V., Lipovskii A., Application of CdSe-nanocrystallite-doped glass for temperature measurements in fiber sensors, Opt. Eng., 39, 2182-2186 (2000)
  19. Stegeman G.I. and Seaton C.T., Nonlinear integrated optics , J. Appl. Phys., 58, R57-R79 (1985)
  20. Ezema F.I. and Osuji R.U., Band gap shift and optical characterization of chemical bath deposited CdSSe thin films on annealing, Chalcogenides Lett., 4 , 69 -75 (2007)
  21. Mishack E. Ekuma et al., Synthesis and characterization of chemical bathdeposited CDCOS thin film, chalcogenide Lett., 7, 31-38 (2010)
  22. Nithima Khaorapapong , Areeporn onatam makoto Ogawa, Very slow formation of copper sulfide and cobalt sulfide nano partices in montmorillonite, App. Clay sci., 51, 182 -186 (2011)
  23. Bao S. J., Li Y., Li C. M., Bao Q., Lu Q. and Guo, Shape evolution and magnetic properties of cobalt sulfide, J. Cryst. Growth Des., 8, 3745-3749 (2008)
  24. Silverstein, Basster and Morrill, Spectrometric identification of organic compounds, John Wiley and Sons, USA, 91 (1991)
  25. Jag Mohan, Organic Spectroscopy, Narosa Publishing House, New Delhi, 61-62 (2000)
  26. Pal D. and Bose D.N., Study of photoluminescence and computation of configuration coordinate diagram of Cu related deep levels in InP, Bull. Mater. Science, 20, 401-407 (1994)
  27. Baibaswata Bhattacharjee and Chung-HsinLu, Multicolor luminescence of undoped zinc sulfide nanocrystalline thin films at room temperature, Thin Solid films, 514, 132-137 (2006)
  28. Fang Yang, Wilkinson M., Austin E.J. and O’Donnel K.P., Origin of the Stokes shift: A geometrical model of exciton spectra in 2D semiconductors , Phys. Rev. Letts., 70, 323-326 (1993)
  29. Yanagida S., Yoshida M., Shiragami T., Pac C., Mori H. and Fujita H., Semiconductor photocatalysis. I. Quantitative photoreduction of aliphatic ketones to alcohols using defect-free zinc sulfide quantum crystallites, J. Phys. Chem., 94, 3104-3111 (1990)
  30. Jayanth I.K., Chawla S., Chander H. and Haranath D., Structural, optical and photoluminescence properties of ZnS: Cu nanoparticle thin films as a function of dopant concentration and quantum confinement effect, Cryst. Res. Technol., 42, 976 -982 (2007)