International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Precipitation of Lead Species in a Pb - H2O System

Author Affiliations

  • 1 Instituto de Investigaciones Metalurgicas, Universidad Michoacana de San Nicolas de Hidalgo, Morelia, Michoacán, MÉXICO

Res. J. Recent Sci., Volume 2, Issue (9), Pages 1-4, September,2 (2013)

Abstract

Precipitation of metallic species in either, liquid-liquid, solid-solid, or liquid-solid systems is a current phenomenon related with the formation and/or deposition of second phases. An example of the above is the deposition of some precipitated species on ore particles during milling, changing their surface properties and affecting the process of capture during flotation. Precipitation of species also occurs during the waste water treatment. Despite the fact that several procedures have been designed to clean water contaminated with heavy metals (i.e., activated zeolite and membranes, gas dispersion devices, bird feathers, biological procedures, etc.) the mechanisms describing the formation of such phases or species are not well understood. This work establishes from a thermodynamic point of view the conditions (pH, electrochemical potential, ionic strength, activity coefficient) to predict the formation of certain species (precipitated or dissolved) in distilled water contaminated with lead by adding Pb(NO3)2, and open to the atmosphere. The pH of the media was varied from 3 to 13. The proposed mechanism of reaction for the system tested here is: Pb(NO3)2 + H2O→Pb2+ + PbSO4→Pb3(CO3)2(OH)2. Being the formation of lead carbonate explained by considering the replacement of sulfates or sulfites, to carbonates in a system reacting with the atmospheric air. From the information derived in this work, it is possible to design a process for cleaning water contaminated with heavy metals through the route sedimentation – flotation, and to predict or avoid the formation of certain species on ore particles that reduce the metallurgical efficiency of the flotation process.

References

  1. Sharma Pramila, Fulekar M.H. and Pathak Bhawana., EWaste- A Challenge for Tomorrow, Research Journal of Recent Sciences, 1(3), 86-93 (2012)
  2. Aremu M.O., Gav B.L., Opaluwa O.D., Atolaiye B.O., Madu P.C. and Sangari D.U., Assessment of Physicochemical Contaminants in Waters and Fishes from Selected Rivers in Nasarawa State, Nigeria, Research Journal of Chemical Sciences, 1(4), 6-17 (2011)
  3. Vaishnav M.M. and Dewangan S., Assessment of Water Quality Status in Reference to Statistical Parameters in Different Aquifers of Balco Industrial Area, Korba, C.G. INDIA, Research Journal of Chemical Sciences,1(9), 67-72 (2011)
  4. Doyle F.M., Ion flotation, Its potential for hydrometallurgical operations, International Journal of Mineral Processing,72, 387-399 (2003)
  5. Reyes Pérez M., Tratamiento continuo, de aguas contaminadas con Cu y Pb, por flotación iónica en celdas con dispersores porosos; efecto de las propiedades de la dispersión aire-líquido en la separación, Tesis de maestría, IIM, UMSNH, (2005)
  6. Barakat M.A., Removal of Cu (II), Ni (III) and Cr(III) Ions from Wastewater Using Complexation - Ultrafiltration Technique, Journal of Environmental Science and Technology,1(3), 151-156 (2008)
  7. Yoon R.H., The Role of Surface Forces in Flotation Kinetics, Flotation- Kinetics and Modelling, Proceedings of the XXI International Mineral Processing Congress, Vol. B, oral sessions, P. Massacci, Elsevier, Rome, Italy, July 23-27, (2000)
  8. Manouchheri H.R., Hanumantha Rao K., Forssberg K.S.E., Correlation between the Electrical Properties of Quartz, feldspar and Wollastonite Minerals and their Tribo-Electric Separation Potential, Physical separation Processing, Proceedings of the XXI International Mineral Processing Congress, Vol. B, oral sessions, P. Massacci, Elsevier,Rome, Italy, July 23-27 (2000)
  9. Garrels R.M. and Christ C.L., Minerals, Solutions, and Equilibria, Harper & Rowe, N. Y. 450 (1965)
  10. Cisternas L.A., Diagramas de fases y su aplicación, Reverte, (2009)
  11. López F.Y., Relaciones hídricas en el continuo agua-suelo-planta-atmósfera, Univ, Nacional de Colombia, (2000)
  12. Taylor P. and Lopata V.J., Stability relationships between some solids in the system PbO-CO-HO, Research Chemistry Branch, Atomic Energy of Canada Limited, Whiteshell Nuclear Research Establishment, Pinawa, Man., Canada ROE ILO, Received May 9, 1983, Can. J. Chem., 62, 395 (1984)
  13. Azareño O.A., Núñez J.P., Figueroa L.A., León D.E., Fernández S.S., Orihuela S.R., Caballero R.M., Bazán R.R., and Yi Choy A.S., Flotación de Minerales Oxidados de Plomo. Revista del Instituto de Investigación de la Facultad de Ingeniería Geológica, Minera, Metalúrgica y Geográfica, 5(10) 34-43 (2002)
  14. Pankow J.F., Aquatic chemistry concepts, CRC Press (1991)
  15. Tavera F.J., Colwell D., Escudero R., and Finch J., Estimation of Gas Holdup in Froths by Electrical Conductivity: Aplication of the Standard Addition Method. Revista de Química Teórica y Aplicada AFINIDAD, Barcelona, 57(486), 139-142 (2000)
  16. Ortiz A.A., Nuñez J.A.A., Figueroa L.A., León D.E., Fernández S.S., Orihuela S. R., Caballero R. M., Bazán R.R., Choy A.S.Y. Notas del Curso “Flotación de Minerales Oxidados de Plomo”. Departamento de Ingeniería Metalúrgica, Universidad Nacional Mayor de San Marcos, Peru, 34-43 (2012)