International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Study of Attenuation Coefficient Measurements in Buffalo Milk at Gamma Energy 662 keV

Author Affiliations

  • 1Nuclear Research Laboratory, Department of Physics, Nowrosjee Wadia College, Pune-411001, MS, INDIA
  • 2 Department of Physics, S.V.S’S Dadasaheb Rawal College, Dondaicha Dist. Dhule-425408, MS, INDIA

Res. J. Recent Sci., Volume 2, Issue (3), Pages 7-13, February,2 (2013)


Mass attenuation coefficients μ of milk sample have been studied by using gamma radiation at energy 662keV. The results have been presented in a graphical form. The graph of path length (cm) V/s particle intensity shows linearity. The points are fitted with least square method. The slope there graphs gives the value of the liner absorption coefficient. The density of milk sample at different concentrations V/s attenuation coefficients shows that attenuation coefficients decreases exponentially with increasing the density and confirms the interaction of gamma radiations with various concentrations of milk sample The mass attenuation coefficient usually depends upon the density and the concentration of the milk samples. Exponential decay was observed. This validates the gamma absorption law.


  1. Hubbell J.H., Photon mass attenuation and energy absorption coefficients from 1 keV to 20 keV, Appli. Radiat. Isot., 33, 1269 (1982)
  2. Hubbel J.H. and Sheltzer S.M., Tables of X-ray mass attenuation coefficient and mass energy absorption coefficients 1 keV to 230 MeV for elements z=1 to 92 and 48 additional substances of dosimetric interest., NISTIR-5632 (1995)
  3. Bradley D.D., Chong C.S., Shukri A., Tajuddin A.A. and Ghose A.M., A new method for the direct measurement of the energy absorbtion coefficient of gamma rays, Nucl. Instrum. Meth.Phys. Res., A280, 39 (1989)
  4. Cunningham J.R. and Johns H.E., Calculation of the average energy absorbed in photon interactions, Med. Phys, 7, 51 (1980)
  5. Carlsson G.A Absorbed Dose Equations. On the Derivation of a General Absorbed Dose Equation and Equations Valid for Different Kinds of Radiation Equilibrium, Radiation research, 5, 219-237 (1981)
  6. Jahagirdar H.A., Hanumaiah B. and Thontadarya B.R., Determination of narrow beam attenuation coefficients from broad beam geometrical configuration for 320KeV photons, Int., Appli.Radiat. Isot, 43, 1511 (1992)
  7. Singh K., Bal H.K., Sohal I.K. and Sud S.P., Measurement of absorption coefficients at 662 keV in soil samples, Applied radiation Isotop, 42,1239 (1991)
  8. Gerwad L., Comments on attenuation co-efficients of 123 KeV gamma radiation by dilute solutions of sodium chloride, Appl. Radiat. Isot., 47, 19149 (1996)
  9. Gerward L., On the attenuation of X-rays and gamma rays in dilute solutions, Radiat. Phys. Chem., 48, 697 (1996)
  10. Bhandal G.S., Study of Photon attenuation coefficients of some multielement materials, Nuclear Science and Engineering, 116, 218-222 (1994)
  11. El-Kateb A.H. and Abdul Hamid, Photon attenuation study of some materials containing Hydrogen, Carbon and Oxygen., Applied radiat.Isot., 42, 303-307 (1991)
  12. Singh Jarnail, Singh Karamjit, Mudahar S. and Kulwant S. Gamma ray attenuation studies in Telurite glasses, National Symposia on radiation Physics, 15, 36-39 (2003)
  13. Demir D., Ozgul A. Un M. and Sachin Y., Determination of Photon attenuation Coefficioent, Porocity and field capacity of soil by gamma ray transmission for 60,356 and 662 keV gamma rays., Applied Radiation and Isotopes, 66, 1834-1837 (2008)
  14. Appoloni C.R. and Rios E.A, Mass attenuation coefficients of Brazilian soils in the range10-1450 keV, Applied Radiat.Isot, 45, 287-291 (1994)
  15. Teli M.T., Chaudhari L.M. and Malode S.S., Attenuation coefficients of 123 keV gamma radiation by dilute solution of sodium chloride, Appli. Radiat isot, 45(10), 987 (1994)
  16. Teli M.T., Chaudhari L.M. and Malode S.S., Study of absorption of 123 keV gamma radiation by dilute solution of zinc sulphate, J. of Pure & applied Physics, 32, 410 (1994)
  17. Teli M.T. and Chaudhari L.M., Appli. Radiat. Isot., Attenuation coefficient of 662 keV gamma radiation by dilute solutions of sodium chloride, 461, 369 (1995)
  18. Teli M.T., Chaudhari L. M., Linear attenuation coefficient of gamma radiation in dilute solutions of potassium chloride , Appli.Radiat. Isot. ,47, 365 (1996)
  19. Teli M.T., On Attenuuation Coefficients of 123 KeV -Radiation by Dilute Solutions of Sodium Choride, Answer to the comments by L.Gerward, Appli.Radiat. Isot, 48, 87 (1997)
  20. Teli M.T. On the attenuation of X-rays and gamma rays for aqueous solutions of salts, Radiat.Phys.&Chem., 53, (1998)
  21. Raje D.V. and Chaudhari L.M., Mass attenuation coefficients of soil samples in Maharashtra State (India) by using gamma energy at 0.662 MeV, Bulg. J. Phys., 37, 158-164 (2010)
  22. Chaudhari L.M. and R. Nathuram, Absorption coefficient of polymers (Polyvinyl Alcohol) by using gamma energy of 0.39 MeV, Bulg. J. Phys., 38 (2010)
  23. Chaudhari Laxman M.and Raje Dayanand V. ,Study of photon attenuation coefficient of soil samples from Maharashtra and Karnataka states (India) from 122 keV to 1330 keV., Research Journal of Chemical Sciences, 2(2) (2012)
  24. Chaudhari Laxman M.and Raje Dayanand V. Mass Attenuation Coefficient Measurements in Soil Sample. Research journal of Chemical sciences, 2(5) (2012)