6th International Virtual Congress (IVC-2019) And Workshop.  International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Spectroscopic and Thermal Studies of Palladium (II) Complex of N-(5-methylpyridin-2-ylcarbamothiol) Cinnamamide Ligand

Author Affiliations

  • 1 Department of Chemical Sciences, Faculty of Science and Technology, Universiti Malaysia Terengganu, 21030, Kuala Terengganu, MALAYSIA
  • 2 Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310, JohorBahru, Johor, MALAYSIA

Res. J. Recent Sci., Volume 2, Issue (11), Pages 12-19, November,2 (2013)

Abstract

N-(5-methylpyridin-2-ylcarbamothiol) cinnamamide ligand (L1) and dichloro (N-(5-methylpyridine-2-yl-carbamothiol) cinnamamide – K2 O,S) palladium (II) (ML1) were successfully synthesised and characterized by several typical spectroscopic and analytical techniques namely Infra-Red (IR) Spectroscopy, 1H and 13C Nuclear Magnetic Resonance and Thermogravimetric Analysis (TGA). The Infrared spectrum for L1 shows four bands of interest namely v(N-H), v(C=O), v(C-N), v(C=N) and v(C=S) which can be observed at 3247cm-1, 1682cm-1, 1473cm-1, 1541cm-1 and 764cm-1 respectively while for the designated metal complex, ML1 the values fall at 3227cm-1, 1689cm-1, 1492cm-1, 1542cm-1 and 774cm-1 respectively. In 1H NMR spectra for the compound L1 and ML1 show protons for N-H which can be observed at δH 10.11ppm, 13.02ppm and δH 8.71ppm, 8.99ppm while the 13C NMR spectra for these compounds, the signal of C=O and C=S can be observed at δC 177ppm, 164ppm and δC 173ppm,166ppm. Whilst, in thermogravimetric analysis, compounds L1 and ML1 started to degrade at temperature 162.14°C (80% weight of sample) and 186.15°C (74 % weight of sample) respectively.

References

  1. Binzet G., Emen F.M., Flörke U., Ilkaynak T., Külcü N. and Arslan H., 4-Chloro-N-[N-(6-methyl-2-pyridyl) carbamothioyl] benzamide, ActaCryst.,65, 081-082 (2009)
  2. Abbasi S., Khani, H., Hosseinzadeh, L and Safari, Z. Determination of thiourea in fruit juice by a kinetic spectrophotometric method, Journal of Hazardous Materials,174, 257–262 (2010)
  3. Tadjarodi A., Adhami F., Hanifehpour Y., Yazdi M., Moghaddamfard Z. and Kickekbick G., Structural characterization of a copper(II) complex containing oxidative cyclization of N-2-(4-picolyl)-N’-(4-methoxyphenyl)thiourea, new ligands of 4-picolylthiourea derivatives and the precursor molecular structure of oxidative cyclization of N-(2-pyridyl)-N’-(4-methoxyphenyl) thiourea, Polyhedron, 26, 4609–4618 (2007)
  4. Ahmad A., Rashid H.M. and Kassim K., Copper Supported On Functionalised Mcm41 Containing Thiourea Ligand As An Catalyst In Oxidation Of Cyclohexene With Hydrogen Peroxide, The MalaysianJournal of Analytical Sciences, 16, 62-70 (2012)
  5. Tadjarodi, A., Adhami, F., Hanifehpour. Y., Yazdi.M., Moghaddamfard, Z. &Kickelbick. G. Structural characterization of a copper (II) complex containing oxidative cyclization of N-2-(4-picolyl)-N0-(4-methoxyphenyl)thiourea, new ligands of 4-picolylthiourea derivatives and the precursor molecular structure of oxidative cyclization of N-(2-pyridyl)-N’-(4-methoxyphenyl) thiourea, Polyhedron., 26, 4609–4618(2007)
  6. Yusof M.S.M., Jusoh R.H., Khairul W.M. and Yamin B.M.,Synthesis and Characterization of Series of N-(3, 4-Dichlorophenyl)-N’(2,3 and 4-methylbenzoyl)thiourea Derivatives, Journal of Molecular Structure, 975, 280–284(2010)
  7. Arslan H., Monsuroglu D.S., Vanderveer D. and Binzet G., The molecular structure and vibrational spectra of N-(2,2-diphenylacetyl)-N’-(naphtalen-1yl)-thiourea by Hartree-Fock and density functional methods, SpectrochimicaActaPart A.,72, 561-571 (2009)
  8. Henderson W., Nicholson B.K. and Rickard C.E.F., Platinum(II) complexes of chelating and monodentatethioureamonoanions incorporating chiral, fluorescent or chromophoric groups, Inorganica Chimica Acta.,320, 101–109 (2001)
  9. Shusheng Z., Tianrong Z., Kun C., Youfeng X. and Bo Y., Simple and efficient synthesis of novel glycosylthiourea derivatives as potential antitumor agents, European Journal of Medicinal Chemistry,43, 2778-2783 (2008)
  10. Sunduru N., Srivastava K., Rajakumar S., Puri S.K., Saxena J.K., Chauhan P.M.S., Synthesis of novel thiourea, thiazolidinedione and thioparabanic acid derivatives of 4-aminoquinoline as potent antimalarials, Bioorganic & Medicinal Chemistry Letters,19, 2570–2573 (2009)
  11. D’Cruz O.J. and Uckun F.M., Discovery of 2,5-dimethoxy-substituted 5-bromopyridyl thiourea (PHI-236) as a potent broad-spectrum anti-human immunodeficiency virus microbicide, Molecular Human Reproduction,11, 767–777 (2005)
  12. Nitulescu G.M., Draghici C., Chifiriuc M.C. and Missir A.V., Synthesis of Isomeric N-(1-Methyl-1hpyrazole-4-Carbonyl)-N’-(Xylyl)-Thiourea and Their Antimicrobial Evaluation, Farmacia., 57:5 (2009)
  13. Celen A.O., Kaymakçolu B., Gumru S., Toklu H.Z and Arcolu F., Synthesis and anticonvulsant activity of substituted thiourea derivatives. Marmara Pharmaceutical Journal.,15, 43-47 (2011)
  14. Adli H.K., Khairul W.M. and Salleh H., Synthesis, Characterization and Electrochemical Properties of Single Layer Thin Film of N-Octyloxyphenyl-N’-(4-Chlorobenzoyl) Thiourea-Chlorophyll As Potential Organic Photovoltaic Cells, Int. J. Electrochem. Sci.,, 499 (2012)
  15. Adli H.K., Khairul W.M. and Salleh H., Linear Nonyloxy-Substituted Thiourea-Chlorophyll Thin Film As Potential Single Layer Photovoltaic Cells, InternationalJournal of Advanced Chemical Technology., , 1 (2011)
  16. Rahamathulla R., Khairul W.M., Salleh H., Adli H.K., Isa M.I.N. and Tay M.G., Synthesis, Characterization and Electrochemical Analysis of V-Shaped Disubstituted Thiourea-Chlorophyll Thin Film as Active Layer in Organic Solar Cells, Int. J. Electrochem. Sci.,8, 3333– 3348 (2013)
  17. Mahesh D. and Rajesh J., TiO2 Microstructure, Fabrication of Thin Film Solar Cells and Introduction to Dye Sensitized Solar Cells, Research Journal of Recent Sciences,2, 25-29 (2012)
  18. Rasool F.K. and Samaneh P., Photovoltaic Device Modeling and Efffect of its Parameters, Research Journal of Recent Sciences,2, 59-64 (2013)
  19. Birinci E., Gulfen M. and Aydin A.O., Separation and recovery of palladium (II) from base metal ions by melamine-formaldehyde-thiourea (MFT) chelating resin, Hydrometallurgy,95, 15–21 (2009)
  20. Saluste C.G., Whitby R.J. and Furber M., Palladium-catalysed synthesis of imidates, thioimidates and amidines from aryl halides, Tetrahedron Letters,42, 6191–6194 (2001)
  21. Jung E., Park K., Kim J., Jung H., Oh I. and Lee S., Palladium-catalyzedMizoroki–Heck coupling reactions using sterically bulky phosphite ligand, Inorganic Chemistry Communications,13, 1329–1331 (2010)
  22. Fairlamb I.J.S., Lee A.F., Loe Mie F.E.M., Niemela E.H., O’Brien C.T. and Whitwood A.C., Halogenated-2-pyrones in Sonogashira cross-coupling: limitations, optimisation and consequences for GC analysis of Pd-mediated reactions, Tetrahedron,61, 9827–9838 (2005)
  23. Alonso F., Beleskaya I.P. and Yus M., Non-conventional methodologies for transition-metal catalysed carbon–carbon coupling: a critical overview, Part 1: The Heck reaction, Tetrahedron,61, 11771–11835 (2005)
  24. Dawood K.M., Microwave-assisted Suzuki–Miyaura and Heck–Mizoroki cross-coupling reactions of aryl chlorides and bromides in water using stable benzothiazole-based palladium(II) precatalysts, Tetrahedron,63, 9642-9651 (2007)
  25. El-Bahy G.M.S, El-Sayed B.A. and Shabana A.A., Vibrational and electronic studies on some metal thiourea complexes, Vibrational Spectroscopy, 31, 101-107 (2003)
  26. Philip, V. Structural and Spectral Investigations of Transition Metal Complexes of Di-2-pyridyl ketone (4), (4)-Disubstituted Thiosemicarbazones, Submitted Doctor of Philosophy Thesis (2004)
  27. Est´evez-Hern´andez, O., Otazo-S´anchez, E., J.L. Hidalgo-Hidalgo de Cisneros., Naranjo-Rodr´guez, I &Reguera, E. A Raman and infrared study of 1-furoyl-3 monosubstituted and 3,3-disubstituted thioureas. SpectrochimicaActa Part A., 62, 964–971 (2005)
  28. Pavia D.L., Lampman G.M. and Kriz G.S., Introduction to Spectroscopy, 3rd Ed. Washington. Brooks/Cole Thomson Learning (2009)
  29. Abrahim R.J. and Reid M., 1H chemical shifts in NMR. Part 18. Ring currents and -electron eects in hetero-aromatics, J. Chem. Soc., Perkin Trans.,, 1081–1091 (2002)
  30. Raja C.R., Vijayabhaskaran B., Vijayan N. and Paramasivam P., Synthesis, growth and characterization analysis of nickel mercury thiocyanate crystal (NMTC), Materials Latters,62, 2737-2739 (2008)
  31. Silverstein R.M., Webster F.X. and KIemle D.J., Spectrometric Identification of Organic Compounds, 7th edition, John Wiley & Sons, Inc (2005)
  32. Kumar S.M.R., Selvakumar S., Kiruba S., Tholkappian M. and Sagayaraj P., Nucleation, growth and characterization of Bis(thiourea) cadmium formate NLO sigle crystals, International Journal of Science and Technology (2011)
  33. Mudlgoudra B.S. and Chougale R.B., Thermal Behavior of Poly (vinyl alcohol)/ Poly (vinyl pyrrolidone)/ Chitosan Ternary Polymer Blend Films, Research Journal of Recent Sciences, , 83-86 (2012)
  34. Morteza M., Reza M.S.A. and Shiva J., Synthesize, Characterization and Thermal behaviour of some New Mercury and Cadmium halides Coordination compounds of Recently synthesized Schiff base, Research Journal of Resent Sciences, 1, 9-15 (2012)
  35. Singh R.K., Bijayani B. and Sachin K., Determination of Activation Energy from Pyrolysis of Paper Cup Waste Using Thermogravimetric Analysis, Research Journal of Recent Sciences,2, 177-182 (2013)