International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Synthesis of activated carbons from plastic waste and elimination of Rhodamine B in Batch mode

Author Affiliations

  • 1Laboratoire de Recherche en Chimie Appliquee (LARCA), Ecole Normale Superieure, Universite Marien NGOUABI
  • 2Laboratoire de Recherche en Chimie Appliquee (LARCA), Ecole Normale Superieure, Universite Marien NGOUABI
  • 3Laboratoire de Recherche en Chimie Appliquee (LARCA), Ecole Normale Superieure, Universite Marien NGOUABI

Res. J. Recent Sci., Volume 10, Issue (3), Pages 1-9, July,2 (2021)


In this study, PET waste is used to prepare PETA (a) and PETA (b) activated carbon in Carbolite Gero CWF-1100, 30-1100°C furnace. Zinc chloride was used as impregnating agent. The surface functions were demonstrated using FTIR infrared analyzes. The iodine value of activated carbon obtained by indirect process is higher (1018.32mg/g) compared to that obtained by direct process (988.56mg/g). The specific surfaces are respectively 828.326 and 1090.735m2/g for PETA (a) and PETA (b). The influence of mass has shown that, for 0.01g, the PETA (b) eliminates yield is 62.58% compared to PETA (a) (45.76%). pH study shows an increase of RB adsorbed when the pH is between 2 and 4. The ionic strength revealed that RB adsorbed, in the absence of NaCl, are lower than those obtained in the presence of NaCl. Theoretical model of Langmuir show best correlation for two materials, while Freundlich model, described the mechanism of PETA (a). These models suggest that the adsorption of this dye is physico-chemical type. Intraparticle kinetic and Langmuir-Hinshelwood (L-H) models explain the adsorption kinetics on our two materials.


  1. Chartier Marcel M (1974)., Les types de pollutions de l, Norois, 82, 183-193.
  2. Rahman, A. and Bacaoui, A., Nongwe, I.B., Ketcha J. M. (2015)., Composite activated carbon from plastic waste and lignocellulosic waste materials., International Research Journal of Natural and Applied Sciences, 2(11).
  3. Kifuani, Philippe Noki and Mukana V. D. (2012)., Adsorption de la quinine bichlorhydrate sur un charbon actif peu coûteux à base de la Bagasse de canne à sucre impregnee de l’acide phosphorique., Int. J. Biol. Chem. Sci., 6(3), 1337-1359.
  4. Andzi Barhe, T., Boukongou, A. B., Ngoma, L.S. and Ongoka, P. R. (2020)., Characterization of activated carbon prepared from lignocellulosic Materials and Kinetic Study of the adsorption of Rhodamine B., JCBPS, 10(4), 01-18.
  5. Mbaye G. (2014)., Developpement de charbon actif à partir de biomasse lignocellulosique pour des applications dans le traitement de l’eau., Thèse de doctorat en technologie de l’Eau, de l’Energie et de l’Environnement. 2iE, Burkina Faso, pp.215.
  6. Siragi, D. B., Maazou, H. I. Hima, M. M. M., Alma, Z. A. and Ibrahim N. (2017)., Elimination du chrome par du charbon actif elabore et caracterise à partir de la coque du noyau de Balanites Aegyptiaca., Int. J. Biol. Chem. Sci., 11(6), 3050-3065.
  7. Bhatti, H. N., Mumtaz, B., Hanif, M. A., & Nadeem, R. (2007)., Removal of Zn (II) ions from aqueous solution using Moringa oleifera Lam. (horseradish tree) biomass., Process Biochemistry, 42(4), 547-553.
  8. Vijayakumar G., Tamilarasan R. and Dharmendirakumar M. (2012)., Adsorption, Kinetic, Equilibrium and Thermodynamic studies on the removal of basic dye Rhodamine-B from aqueous solution by the use of natural adsorbent perlite., J. Mat. Envir. Sci., 3(1), 157-170.
  9. Essomba, J. S., Nsami, J. N., Belibi, P. D. B., Tagne, G. M., Mbadcam, J. K., & Ketcha, J. (2014). Adsorption of cadmium (II) ions from aqueous solution onto kaolinite and metakaolinite. Pure and Applied Chemical Sciences, 2(1), 11-30., undefined, undefined
  10. Bi, M. I. G., Yapo, A. J., Ello, A. S., Diabate, D., & Trokourey, A. (2008). Adsorption of acetic and benzoic acids from aqueous solutions on activated carbon. J. Soc. Ouest-Afr. Chim, 26, 53-57., undefined, undefined
  11. Myers, AL. and Prausnitz J. M. (1965)., Thermodynamics of Mixed-gas Adsorption., AlChE J., 11(1), 121-127.
  12. Djilani, C., Zaghdoudi, R., Modarressi, A., Rogalski, M. and Djazi, F. (2012)., Elimination of organic micropollutants by adsorption on activated carbon prepared from agricultural waste., Chem. Engin. J., 189-190, 203-212.
  13. Byrne C.E. and Nagle, D.C. (1997)., Carbonization of wood for advanced materials applications., Carbon, 35(2), 259–266.
  14. Tang, M. M., & Bacon, R. (1964). Carbonization of cellulose fibers—I. Low temperature pyrolysis. Carbon, 2(3), 211-220., undefined, undefined
  15. Ott, E., Spurlin, H. M., Grafflin, M. W., Bikales, N. M., & Segal, L. (Eds.). (1954). Cellulose and cellulose derivatives (Vol. 5). Interscience Publishers., undefined, undefined
  16. Tzong-Horng L. (2010)., Development of mesoporous structure and high adsorption capacity of biomass-based activated carbon by phosphoric acid and zinc chloride activation., Chem. Eng. J., 158, 129.
  17. Kunquan, L., Zheng, Z., Xingfa, H., Guohua, Z., Jingwei, F. and Jibiao Z. (2009)., Equilibrium, kinetic and thermodynamic studies on the adsorption of 2-nitroaniline onto activated carbon prepared from cotton stalk fiber., Journal of Hazardous Materials, 166, 213-220.
  18. Jia Q. and Lua A.C. (2008)., Effects of pyrolysis conditions on the physical characteristics of oil-palmshell activated carbons used in aqueous phase phenol adsorption., J. Anal. Appl. Pyrolysis, 83, 175-179.
  19. Jadhav, A.N. and Vaujara A.K. (2004)., Removal of phenol from waster using sawdust, polymerized sawdust and sawdust carbon., Indian Journal of Chemical Technology, 11, 35-41.