6th International Young Scientist Congress (IYSC-2020) will be Postponed to 8th and 9th May 2021 Due to COVID-19. 10th International Science Congress (ISC-2020).  International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

On the Energy Estimation of Lightning Discharge

Author Affiliations

  • 1Department of Physics, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, INDIA

Res. J. Recent Sci., Volume 1, Issue (9), Pages 36-40, September,2 (2012)

Abstract

In this paper, we calculated thermal power, dissipated heat energy and radiated energy due to the current flowing in the body of lightning channel. The peak value of thermal power and total dissipated heat/thermal energy come out to be of the order of 1010 W and 106 J respectively. The calculated radiated energy comes out to be around 3.23 kJ. It is found that the energy lost in the form of radiation is much low as compared to the dissipated heat energy in the lightning channel.

References

  1. Saunders C., Charge separation mechanisms in clouds, Space Sci. Rev., 137, 335-353 (2008)
  2. Uman M.A., The Lightning Discharge, Academic Press Inc. (London) LTD., 39, 8, (1987)
  3. Paras M.K. and Rai J., Electric and magnetic fields from return stroke-lateral corona system and red sprites, J. Eelectromag. Analys. Applications., 3(12), 479-489 (2011)
  4. Kar S.K., Liou Y.-A. and Ha, K.-J., Aerosol effects on the enhancements of cloud-to-ground lightning over major urban areas of South Korea, Atmos. Res., 92, 80-87 (2009)
  5. Sentman D.D. and Wescott E.M., Red sprites and blue jets: Thunderstorm-excited optical emissions in the stratosphere, mesosphere, and ionosphere, Phys. Plasmas, 2(6), 2514-2522 (1995)
  6. Lyons W.A., Nelson T.E., Williams E.R., Cummer S.A. and Stanley M.A., Characteristics of sprite-producing positive cloud-to-ground lightning during the 19 July 2009 STEPS mesoscale convective systems, Monthly Weather Rev., 131, 2417-2427 (2003)
  7. Barrington-Leigh C.P. and Inan U.S., Elves triggered by positive and negative lightning discharges, Geophys. Res. Lett., 26(6), 683-686, (1999)
  8. Singh D., Singh R.P., Kamra A.K., Gupta P.N., Singh R., Gopalakrishnan V. and Singh A.K., Review of electromagnetic coupling between the Earth’s atmosphere and the space environment, J. Atmos. Sol. Terr. Phys.,67(6), 637-658 (2005)
  9. Cooray V., On the upper limit of peak current in return strokes of lightning flashes, X International Symposium on Lightning Protection, Curitiba, Brazil, 167-172, 9-13 November (2009)
  10. Orville R. E., A high-speed time-resolved spectroscopic study of the lightning return stroke: Part II. A quantitative analysis, J. Atmos. Sci., 25, 839–851 (1968)
  11. Wang J., Yuan P., Guo F.X., Qie X.S., Ouyang Y.H. and Zhang Y.J., The spectra and temperature of cloud lightning discharge channel, Sci. China Series D: Earth Sci., 52(7), 907-912 (2009)
  12. Rai J., Current and velocity of the return stroke lightning, J. Atmos. Sol. Terr. Phys., 40(12), 1275-1280 (1978)
  13. Guo Y.X., Yuan P., Shen X.Z. and Wang J., The electrical conductivity of a cloud-to-ground lightning discharge channel, Phys. Scr., 80(3)(2009)
  14. Hassan S., Moosavi S., Moini R. and Sadeghi S. H. H., Representation of a lightning return-stroke channel as a Nonlinearly loaded thin wire antenna, IEEE Trans. Electromag. Compatibility, 51(3), 488-498 (2009)
  15. Pathak P.P., Some Studies on Lightning, Ph.D. Disser-tation, University of Roorkee, Roorkee (1982)
  16. Pathak P.P., Rai J. and Varshneya N.C., VLF radiation from lightning, Geophy. J. R. astr. Soc.,69, 197-207 (1982)
  17. Rakov V.A. and Uman M.A., Lightning: Physics and Effects,Cambridge University Press, New York, (2003)
  18. Idone V.P. and Orville R.E., Lightning return stroke velocities in the thunderstorm research international program (TRIP), J. Geophys. Res., 87(C7), 4903-4915 (1982)
  19. Navarro-González R., Villágran-Muniz M., Sobral H., Molina L. T. and Molina M. J., The physical mechanism of nitric oxide formation in simulated lightning, Geophys. Res. Lett., 28(20), 3867-3870 (2001)
  20. Joshi I.S. and Tadiparti M.C., Linkage between cyclonic storms, Geomagnetic storms, sunspot numbers and climate change, Res. J. Recent Sci., 1(2), 100-103 (2012)
  21. Krider E.P. and Guo C., The peak electromagnetic power radiated by lightning return strokes, J. Geophys. Res., 88(C13), 8471-8474 (1983)
  22. Nag A. and Rakov V.A., Compact intracloud lightning discharges: 2. Estimation of electrical parameters, J. Geophys. Res., 115(D20103)1-13 (2010)
  23. Gwal A.K., Jain Santosh, Panda Gopal, Gujar Y.S., Raghuwanshi S. and Vijay S.K., Study of Ionosphericperturbations during strong seismic activity by correlation technique using NmF2 data, Res. J. Recent Sci., 1(1), 2-9 (2012)
  24. Hubert P. and Laroche P., Triggered lightning in New Mexico, J. Geophys. Res., 89(D2), 2511–2521 (1984)
  25. La Fontaine B., Vidal F., Comtois D., Chien C. Y., Desparois A., Johnston T. W., Kieffer J. C., Hubert P. M., Pepin H. and Rizk F. A. M., The influence of electron density on the formation of streamers in electrical discharges triggered with ultrashort laser pulses, IEEE Trans. Plasma Sci., 27, 688–700 (1999)
  26. Khan N., Mariun N., Aris I. and Yeak J., Laser-triggered lightning discharge, New J. Phy., 4, 61.1-61.20 (2002)