Comparative Study of Seed Germination and Percentage of Fungal Infection of Ashwagandha (Withania somnifera (L.) Dunal.)

Ingle Subhas* and Bnagale Sachin
Department of Botany, D.K.A.S.C. College, Ichalkaranji, Dist. Kolhapur – 416115, MS, INDIA

Abstract

Ashwagandha (Withania somnifera (L.) Dunal.), is a medicinal plant. Presently, there are five different varieties are under in cultivation. These varieties shows different rate of seed germination and fungal infection. These variation in percent of seed germination and fungal infection are investigated in the present work by blotter method.

Key words: Ashwagandha, cultivated and, wild varieties, blotter paper method.

Introduction

Ashwagandha (Withania somnifera (L.) Dunal.) is popularly known as Indian Ginseng. It is an important medicinal plant. The roots of this plant, occasionally its leaves and seeds are used in ayurvedic and Unani medicines. It is commonly prescribed for hiccup, bronchitis, dropsy, rheumatism and female disorders; the roots of this plant also prescribed for general sexual weakness in human beings. Ashwagandha roots are used in many formulations prescribed in variety of manifestation viz. musculoskeletal conditions. It is a general tonic for overall health. Withania somnifera Dunal (ashwagandha, WS) is widely used in Ayurvedic medicine, the traditional medical system of India. It is an ingredient in many formulations prescribed for a variety of musculoskeletal conditions (e.g., arthritis, rheumatism), and as a general tonic to increase energy, improve overall health and longevity, and prevent disease in athletes, the elderly, and during pregnancy. Many pharmacological studies have been conducted to investigate the properties of ashwagandha in an attempt to authenticate its use as a multi-purpose medicinal agent. For example, anti-inflammatory properties have been investigated to validate. somnifera, dunal, withaferin, sitindoside, solanaceae, Indian ginseng, and winter cherry. Results of these searches were reviewed to identify relevant articles.

Ashwagandha contains very high concentration of metabolites like steroidal lactones, alkaloids and flavonoides, so it is used in more than 90 commercially ayurvedic formulations. This plant is cultivated in north western region of Madhay Pradesh, on about 400 ha. Such valuable and economical important ayurvedic plant is infected by some fungi. The common diseases are leaf rust since many of ashwagandha’s uses have not been scientifically validated, skepticism can naturally be expected when presented with an herb purportedly useful in so many ailments. In Ayurvedic medicine there is a class of herbs, including WS, known as adaptogens or vitalizers. Adaptogens cause adaptive reactions to disease, are useful in many unrelated illnesses, and appear to produce a state of nonspecific increased resistance (SNIR) to adverse effects of physical, chemical, and biological agents. They are relatively innocuous, have no known specific mechanism of action, normalize pathological effects, and are usually glycosides or alkaloids of a plant. The chemistry of WS has been extensively studied and over 35 chemical constituents have been identified, extracted, and isolated. The biologically active chemical constituents are alkaloids (isopelletierine, Withania somnifera (Ashwagandha) phenylbutazone (100mg/kg) was given as a positive control. WS was found to cause considerable reduction in inflammation. Acute phase reactants of the blood monitored by crossed immunoelectrophoresis showed changes in the concentration of many serum proteins (α2-glycoprotein, major acute phase α1-protein, and pre-albumin) in the WS group.

Material and Methods

In this experiment the germination of different verities like J.A.-20, W.S.-90-100, Indore general, Posida, Nagori, and Wild varieties of Ichalkaranji area. These seeds are collected from different regions like as mahathama phule Agriculture University, Rehire, Marathawada Agriculture University Parbhani, and Ichalkaranji field area.
The different methods are used for germination studies (sand, soil, agar plate method, towel paper method and blotter paper method). Among the followed methods are used the Blotter paper method, is found to be more suitable for germination as it is well documented by Thapliyal and Thapliyal, 2005. Healthy and each 10 infected seeds are selected from each variety. These seeds are dipped for one minute in 0.1% Mercuric chloride solution. Then, washed thoroughly with sterilized distilled water and are placed in Petri plates. Incubated for germination at room temperature, up to 14 days. The observations are recorded as given in table-1 and figure.1 a,b.

Result and Discussion

The incubation studies revealed that, after 14 days, the germination is initiated, in different varieties of Ashwagandha. The percentage of seed germination is found to be higher in variety J.A-20. And, lower in fungal infection. The variety Nagori, W.S.-90-100 and wild varieties show medium seed germination, and medium fungal infection. The varieties posida and Indore general, shows low seed germination and higher fungal infection.

Conclusion

The results of present work revealed that some varieties, like Posida, Indore general. Having low seed germination and higher fungal infection. There is necessity of treatment of different growth hormones, fungicides, nutritional sources and efficacy plant parts. So as to increase the productivity this plant Ashwagandha production is need to be increase day to day.

Acknowledgement

The author is thankful to the Principal Dr. Milind Hujare, D.K.A.S.C. College Ichalkaranji, Dist. Kolhapur (M.S.) 416115 and Dr.C.R.Patil D.K.A.S.C.College, Ichalkaranji. For cording necessary facilities and help in investigation and encouragement.

References

Table 1
Comparative study of seed germination of Ashwagandha varieties and fungal infections

<table>
<thead>
<tr>
<th>Method</th>
<th>Variety</th>
<th>Germination %</th>
<th>Fungal infection %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H</td>
<td>I</td>
<td>H</td>
</tr>
<tr>
<td>Blotter paper</td>
<td>W.S-90-100</td>
<td>60</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>Nagori</td>
<td>50</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>J.A.-20</td>
<td>75</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>Indore General</td>
<td>40</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Posida</td>
<td>40</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Wild variety</td>
<td>60</td>
<td>50</td>
</tr>
</tbody>
</table>

H – Healthy seed, I – Infected seed

Figure 1 (a and b)
Comparative study of seed germination of Ashwagandha varieties and fungal infections