International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Waste Water Treatment by Precipitating Copper, Lead and Nickel Species

Author Affiliations

  • 1Instituto de Investigaciones Metalurgicas, Universidad Michoacana de San Nicolas de Hidalgo, Ciudad Universitaria Edificio ”U”, Apartado postal 888, C.P. 58000, Morelia, Michoacán, MÉXICO

Res. J. Recent Sci., Volume 1, Issue (10), Pages 1-6, October,2 (2012)

Abstract

Precipitation of metallic species in either, liquid-liquid, solid-solid, or liquid-solid systems is a current phenomenon that is related with the formation and/or deposition of second phases. An example of the above is the deposition of some precipitated species on ore particles during milling, changing their surface properties and affecting the process of capture during flotation. Precipitation of species also occurs during waste water treatment. Despite the fact that several procedures have been designed to clean water contaminated with heavy metals (i.e., activated zeolite and membranes, gas dispersion devices, bird feathers, biological procedures, etc.) the mechanisms describing the formation of such phases or species are not well understood. This work establishes from a thermodynamic point of view the conditions (pH, electrochemical potential, ionic strength, activity coefficient) to predict the formation of certain species (precipitated or dissolved) in distilled water contaminated with lead, copper, and nickel, and open to the atmosphere. The pH of the media was varied from 3 to 13. Experimental results show the feasibility to control selectively the precipitation of given copper, nickel, and lead species from contaminated water, by controlling the pH of the liquid media. From the information derived in this work, it is possible to design a process for cleaning water contaminated with heavy metals by promoting the sedimentation of metallic species, and to predict or avoid the formation of certain species on ore particles that reduce the metallurgical efficiency during the flotation process.

References

  1. Sharma Pramila, Fulekar M.H. and Pathak Bhawana., EWaste- A Challenge for Tomorrow, Research Journal of Recent Sciences, 1(3), 86-93 (2012)
  2. Aremu M.O., Gav B.L., Opaluwa O.D., Atolaiye B.O., Madu P.C. and Sangari D.U., Assessment of Physicochemical Contaminants in Waters and Fishes from Selected Rivers in Nasarawa State, Nigeria, Research Journal of Chemical Sciences, 1(4), 6-17 (2011)
  3. Vaishnav M.M. and Dewangan S., Assessment of Water Quality Status in Reference to Statistical Parameters in Different Aquifers of Balco Industrial Area, Korba, C.G. INDIA, Research Journal of Chemical Sciences, 1(9), 67-72 (2011)
  4. Aksu S. and Doyle F.M., Potential-pH Diagrams for Copper in Aqueous solutions of various organic complexing agents, Electrochemical Society Proceedings, (14), 258-269 (2000)
  5. Reyes Pérez M., Tratamiento continuo, de aguas contaminadas con Cu y Pb, por flotación iónica en celdas con dispersores porosos; efecto de las propiedades de la dispersión aire-líquido en la separación, Tesis de maestría, IIM, UMSNH (2005)
  6. Barakat M.A., Removal of Cu (II), Ni (III) and Cr(III) Ions from Wastewater Using Complexation - Ultrafiltration Technique, Journal of Environmental Science and Technology, 1(3), 151-156 (2008)
  7. Yoon R.H., The Role of Surface Forces in Flotation Kinetics, Flotation- Kinetics and Modelling, Proceedings of the XXI International Mineral Processing Congress, Vol. , oral sessions, P. Massacci, Elsevier, Rome, Italy, July 23-27, (2000)
  8. Manouchheri H.R., Hanumantha Rao K., Forssberg K.S.E., Correlation between the Electrical Properties of Quartz, feldspar and Wollastonite Minerals and their Tribo-Electric Separation Potential, Physical separation Processing, Proceedings of the XXI International Mineral Processing Congress, Vol. B, oral sessions, , P. Massacci, Elsevier, Rome, Italy, July 23-27, (2000)
  9. Garrels R.M. and Christ C.L., Minerals, Solutions, and Equilibria, Harper and Rowe, N.Y., 450 (1965)
  10. Cisternas L.A., Diagramas de fases y su aplicación,Reverte, (2009)
  11. Pankow J.F., Aquatic chemistry concepts, CRC Press, (1991)
  12. Azareño O.A., Núñez J.P., Figueroa L.A., León D.E., Fernández S.S., Orihuela S.R., Caballero R.M., Bazán R.R., and Yi Choy A.S. Flotación de Minerales Oxidados de Plomo. Revista del Instituto de Investigación de la Facultad de Ingeniería Geológica, Minera, Metalúrgica y Geográfica, 5(10), 34-43 (2002)
  13. Tavera F.J., Colwell D., Escudero R. and Finch J., Estimation of Gas Holdup in Froths by Electrical Conductivity: Aplication of the Standard Addition Method, Revista de Química Teórica y Aplicada AFINIDAD, Barcelona, 57(486), 139-142, (2000)
  14. Sean R.S. and Thomas S.D., Raman Spectroscopy of Co(OH) at High Pressures: Implications for Amorphization and Hidrogen Repulsion, Physical Review, 66B, 134301-1–134301-8 (2002)
  15. Chanturiya V.A., Matveeva T.N. and Lantsoba L.B., Investigation into Products of Dimethyl Dithiocarbamate and Xantate Sorption of Sulfide Minerals of Copper-Nickel Ores, Journal of Mining Science,39(3) 281-286 (2003)
  16. Liu, Z. and Doyle F.M. Modeling Metal Ion Removal in Alkylsulfate Ion Flotation Systems, Minerals and Metallurgical Processing, 18(3), 167-171, (2001)
  17. Shigehito D., Akinobu H., Bienvenu B.A., and Mizuhata M., - Ni(OH) Films Fabricated by Liquid Phase Deposition Method, Thin Solids Films, 517(5), 1546-1554 (2009)
  18. Guo-riu F., Zhong-ai H., Li-jing X., Xiao-qing J., Yu-long X., Yao-xian W., Zi-yu Z., Yu-ying Y., and Hong-ying W., Electrodeposition of Nickel Hydroxide films on Nickel Foil and its Electrochemical Performances for Supercapacitor. International Journal of Electrochemical Science, , 1052-1062 (2009)