Synthesis and characterization of tetra amide macro cyclic metal-complex with transition metals and its antimicrobial property

Giriraj S. Mandal1, Smita Joshi2, Surendra Sarasaiya3 and Sulbha Amlathe1*

1Department of Applied Chemistry,UIT, Barkatullah University, Bhopal, MP, India
2Department of Chemistry, Govt. Geetanjali Girls' P.G. (Autonomous) College, Bhopal, MP, India
3Bioresource Institute for Healthy Utilization and International Research Laboratory, Medical University, Zunyi, China

Available online at: www.isca.in, www.isca.me
Received 29th September 2018, revised 25th November 2018, accepted 17th December 2018

Abstract

Synthesis as well as complexes characterization \([M (L^1) Cl_2]\), Ni (II), M=Cobalt, Nickel, Copper, and Zinc; and ligand \(L^1\) was examined by FE-SEM/EDS, UV-Visible, FT-IR and XRD. The \(L^1\) shown to be matched with tetra amide divalent transition metals giving precipitates upon self-assembly at 0°C. The powder XRD and FT-IR maintained the continuation of a complexation with transition metal cations indicates the formation of self-assembled over C-H...O; O-H...O interface of the termination dicarboxylic acids. The complexes were screened out for the antimicrobial activity by disc diffusion agar technique. The potency of compound \([M (L^1) Cl_2]\) was tested against the bacteria such as E.coli and S.aureus and fungi (A. niger and C. albicans) strains. Ampicilline applied as reference for bacteria and fluconazole in case of fungi. The Copper and Nickel metal complex showed the highest in vitro antibacterial action (Escherichia coli and Staphylococcus aureus) as related to the standard drug while the metal complexes were less effective antifungal activity against test fungi (A. niger and C. albicans). Finding revealed that metal multiplexes from the synthesized compounds, which is high potential for the industry and environment.

Keywords: Self assembles, Bolaamphiphiles, rigid rod, antimicrobial activity.

Introduction

After a duo years of general research work in many laboratories all-inclusive, macrocyclic chemistry is an ingrained and the highly documented branch of science. Amide have considered a basic stone for the edifice of modern macrocyclic modern chemistry1. The macrocyclic legends have hollow with N-H group have an intensive area of study with the numerous transition metals2-4. Macrocyclic molecules containing with different ions like transition metals in adjacent is measured imperative growing effectiveness substrate5-7. Macrocyclic metal complexes are also applying for biological fields such as antimicrobial, antifertility, antimalarial, anticancer, antiviral and anti-HIV activities8,13. Chandra and Gupta14, reported the transition macrocyclic developments with a new macrocyclic tetradentate nitrogen supporter legend, that give upsurge to ecological, industrial or healthness-related possible application15-19. Many complexes possessing N-H assembly all together consequences into the gel or solid constituents20. The robust dimeric COOH-COOH interface in these particles remarkably provides a variety of elevations for example rod, knots, and helix etc., thus the dicarboxylic mixtures possessing various possible applications, we inspired to synthesis varieties of around new macrocyclic molecules containing N-H group diester-dicarboxylic compounds, following the desymmetrization method with a view to enriching these versatile organic molecules. Carboxylic acid is being the multidentate ligand, their coordination with metallic ion primes into the verities of metal developments. The transition metal complexes have played an essential role in a huge amount of widely differing biological procedures. Many of these progressions are necessities, in that only convinced transition metal (ions) in definite oxidation positions that can carry about the essential macrocyclic structural condition.

Recently, the tetra-amide base complexes have been reported to show a multiplicity of biological actions, which is accountable for various antibacterial, antifungal activities. They formed a novel motivating class of macro cyclic complexes that has been popularized used in the coordination chemistry of transition, and main group elements.

The present investigation was mainly focused on the synthesis of a series of compounds containing tetra amide divalent transition metals and to evaluate their antimicrobial potency.

Materials and methods

Materials, instruments and reagents: Chemicals are obtained from Aldrich and Corporation, India. The melting points were determined routinely in open capillaries, the morphology (FE-SEM/EDS) was performed on a Model JOEL JSM-5600, Japan, the microanalyses of the compounds were completed using an Elemental analyzer (HITACHI CHNS/O), Germany at CSIR,
AMPRI, Bhopal. Mass examination was done via electron sprig ionization (ESI⁺) procedure on water QT micro-mass spectrometer system. FT-IR bands were verified by means of KBr bits on a PerkinElmer band GX FT-IR spectrophotometer. A concentrate XRD (X-ray diffraction) pattern of dehydrated trials was chosen by the reflection system on a Rigaku diffractometer (Model: RINT 2000) via d-space elongated alongside multi-layer optics monochromatic Cu Ka radioactivity (50 kV, 40 mA). The molar conductance of compact divergent shift metal developments in DMF (10⁻³ M) was precise by means of conductometter; Sybron-Barnstead (Meter- PM.6, E = 3406). The bacteria S. aureus, E. coli and fungus like A. niger and C. albicans were obtained from the Department of Microbiology at BU, Bhopal, M.P., India.

Synthesis of Ligand (L¹): The outline for the preparation of diester-based bolaamphiphiles is shown in Scheme-1.³⁵

Development of metal complex [M (L¹) Cl₂]: A mixture of L¹ (1.7g, 0.005mmol) and ethylene diamine (0.335ml, 0.005mmol) liquified in 50ml ethanol was magnetic enthused for around one hour. A warm ethanolic resolution of the appropriate metal chloride (0.0025mmol) was then added. The combination was stimulated with moderate heating (60-90°C) for 5h. cooling up gave a solid colored swift complexes was sieved off, wash away several times by cold ethanol and dehydrated underneath of vacuum.

Preservation of test cultures: Fungal culture (A. niger and C. albicans) and bacterial culture (E. coli and S. aureus) were procured from the Department of Microbiology at BU, Bhopal, M.P., India for the research study. Strains were preserved on potato dextrose agar and nutrient agar media plates and tubes at 37°C and 28°C, respectively.

Filter paper disc diffusion plate assay: The experiments of antimicrobial activity were conducted using filter paper disc diffusion plate assay as described by Chandra S. et al. for the fungi, the test immune serum was immersed in water. All test fungal strain deferral was dispensed into the pre-sterilized petri plates. Subsequently that melted potato dextrose agar (PDA) was dispensed into the petri plates encompassing immune serum and interchanged to combine the immune serum with homogeneously and set aside for solidification. Afterward solidification, the sterilized blotting paper round (5mm) was saturated in the dilute metal complex in diverse concentrations. The disc was dehydrated under precise temperature to eliminate additional solvent. Fluconazole (for fungi) and Ampicilline (for bacteria) and test plates nurtured at 37°C and 28°C for 24-72 hours. The outcomes were stated in relations to inhibition zone diameter. All trials were performed in triplicates.

To determine the antibacterial and antifungal activity against test microorganisms: The filter paper disc diffusion plate assay was used to regulate the antimicrobial action of metal complex [M (L¹) Cl₂] derivatives against a test organism. The immune serum was feast over the nutrient agar plates by means of a sterile cotton gauze with the aim of obtain unchanging microbial development. Then, the organized antimicrobial metal complex [M (L¹) Cl₂] derivatives discs were kept over the lawn and pressed slightly along with control [Fluconazole (for fungi) and Ampicilline (for bacteria)]. The nurtured plates were kept at 28°C for 72 of fungi and 37°C at 24 hours for bacteria. The identical course of action was adopted for standard drugs. The movement was determined by using the technique at an attentiveness of 100µg/mL solution of synthesized [M (L¹) Cl₂] complexes. 100µg/mL solution of the standard drugs, Fluconazole (for fungi) and Ampicilline (for bacteria) were also equipped. The antimicrobial action was assessed with measured the diameter of inhibition zones in millimetre (mm). An trial was performed in triplicate and the average zone of inhibition diameter was noted.

Results and discussion
The M (L¹) Cl₂] complexes are exposed to essential analysis. The consequences are recorded with different molecular plan and melting arguments as accessible in Table-1. The consequences are attained in good contract with those intended from the optional formula. The sharp melting opinions are indicated the concentration of the preparation macrocyclic complexes is given by the scheme-2.

![Scheme -1: Diester dicarboxylic Bolaamphiphiles compound with their functional role.](image)
Table- 1: Melting point, colour, molar conductance and systematic data of the compound.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Colour</th>
<th>Melting point (°C)</th>
<th>Λ_m (cm2 Ω$^{-1}$ mol$^{-1}$)</th>
<th>Mol. Wt.</th>
<th>Found (Clacd.) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[CoL1 Cl$_2$]</td>
<td>Green, Brown</td>
<td>179</td>
<td>66</td>
<td>954.79</td>
<td>M: 6.59 (7.23), Cl: 7.93 (8.44), C: 53.70 (54.72), H: 4.06 (5.17), N: 6.26 (7.20), O: 21.46 (22.41)</td>
</tr>
<tr>
<td>[NiL1 Cl$_2$]</td>
<td>Light Blue</td>
<td>152</td>
<td>15</td>
<td>928.43</td>
<td>M: 6.56 (7.21), Cl: 7.93 (8.52), C: 53.72 (54.27), H: 4.06 (5.17), N: 6.26 (7.21), O: 21.47 (22.39)</td>
</tr>
<tr>
<td>[CuL1 Cl$_2$]</td>
<td>Dull Green</td>
<td>134</td>
<td>17</td>
<td>959.32</td>
<td>M: 7.07 (7.1), Cl: 7.89 (8.10), C: 53.43 (53.89), H: 4.04 (4.87), N: 6.23 (7.11), O: 21.35 (22.07)</td>
</tr>
</tbody>
</table>

Scheme-2: Synthetic rout of metal complexes.

Configuration and structure of metal developments: The formation of tetra amide macrocyclic compound of the transition metals, the ligand (L1) was exposed to elemental examines (C, N, H and metals), FT-IR, conductance of moles with FE-SEM, to recognize their uncertain formulae in a test to explain their structures. The consequences of elemental examines are recorded in Table-1 recommend the formulae nature [M (L1) Cl$_2$], (M=Cobalt, Nickel, Cupper, and Zinc).

Measurement of molar conductivity: The tetra amide metal developments were liquified in DMF with the molar conductivity concentrations of 10^{-3}M at 25°C were analysed. Table-1shows the conductance of molar values of the transition metal developments. Molar conductivity standards reduction series of 15–66Ω$^{-1}$ mol$^{-1}$ cm2 represented that these are complexes with non-electrolytes.

Electron microscopic observation: The FE-SEM of the transition metal complexes was recorded to understand the formation of rigid rod structures. To elucidate the rigid rod structures are accountable for the coordination with the metal ions, respectively. We carried out the FE-SEM images in Figure-1 and 2 display the 1/ Copper (II) complexes upon self-assembly at room temperature. The 1/Copper (II) complex stick is nearly comparable to the carbon-based nano fibres as before described. The metal cation developments were also self-possessed of the rigid rod. We also performed EDS to clear percentage amount of metal present in the tetra amide metal complexes. The EDS of each rigid rod shows the peaks ascribable to transition metals correspondingly.

Thus, the two sets of FT-IR peaks appeared in this region indicate the presence of the terminal and the spacer COO group in all these metal complexes. The XRD outlines of the remote and dehydrated transition metals, developments upon self-assembly at room temperature are revealed in Figure-4. Even though the strengths are moderately sharp for the reason that of the crystalline nature of the 1/Copper (II) although the intensities are relatively strong reflection points appear in a comparable way as the carbon-based sharp rigid rod structure. The nonappearance of strong intermittent reflection points in the minor-angle area proposes that the rod is built on no extended-range association. All the consequences of the microscopic thought, FT-IR band, and XRD examination maintained to the metal harmonization of fatal carbonyl anions take place on the organic sharp rigid rod structure.
Figure-1: FE-SEM picture of (A) is Ligand L1 and (B) is the Copper (II) complex, self-assembled at room temperature on complexation with metal ions.

Table-2: FT-IR Vibrational frequencies of the compounds.

<table>
<thead>
<tr>
<th>Compound</th>
<th>(\nu) (N-H)</th>
<th>(\nu) (C-H)</th>
<th>(\nu) (M-N)</th>
<th>(\nu) (M-Cl)</th>
<th>(\nu) (C=O)</th>
<th>Ring vibration</th>
</tr>
</thead>
<tbody>
<tr>
<td>[CoL1 Cl\textsubscript{2}]</td>
<td>3270,3200</td>
<td>2900</td>
<td>1680</td>
<td>1490</td>
<td>1240</td>
<td>690</td>
</tr>
<tr>
<td>[NiL1 Cl\textsubscript{2}]</td>
<td>3300,3240</td>
<td>2910</td>
<td>1700</td>
<td>1500</td>
<td>1270</td>
<td>680</td>
</tr>
<tr>
<td>[CuL1 Cl\textsubscript{2}]</td>
<td>3290,3230</td>
<td>2910</td>
<td>1690</td>
<td>1520</td>
<td>1240</td>
<td>660</td>
</tr>
<tr>
<td>[ZnL1 Cl\textsubscript{2}]</td>
<td>3290,3290</td>
<td>2880</td>
<td>1700</td>
<td>1520</td>
<td>1250</td>
<td>660</td>
</tr>
</tbody>
</table>
UV-Vis Spectra: The experimental sites of the absorption groups in the electric band of the transition metals, macrocyclic developments noted. DMSO presented a weak strength band at 19151, 26954, 14947 and 22675 cm$^{-1}$ consistent to a high rotation classification which may be assigned dependable with an octahedral situation in the area of the all transition metal complexes. However, the cobalt (II) developments exhibit two groups in the 21739, 20366 and 17953, 19157 cm$^{-1}$ areas also resemble to high spin scheme transferable transitions, correspondingly, dependable through region of the copper (II) ions. Developments, everyone presented a magnetic instant analogous to a spin permitted multifaceted. Their UV spectrum showed two separate bands arising from the geometry of the Ni (II) complex. Two spectra around 40160, 37664 and 28490,
26954 cm\(^{-1}\) and one broadband around 11150 and 11250 cm\(^{-1}\) exchangeable transition, respectively. The UV spectrum of Zn(II) complex, every show 20250, 20400 cm\(^{-1}\) sideways by the 16450, 16550 cm\(^{-1}\) respectively. This absolutely assigned to the transitions, corresponding to a distorted octahedral geometry. Their magnetic instant values additional provision the above-anticipated geometry. The high intensity bands observed around 36764 cm\(^{-1}\) for all the developments in the UV area may be allocated as a metal ligand control transmission excitation shown in Figure-5\(^{27-28}\).

Antibacterial and Antifungal activity of [M (L\(^1\)] Cl\(_2\)] derivatives: The results of an *in vitro* antimicrobial activity showed that the activity of metal complex [M(L\(^1\)] Cl\(_2\]] derivatives constitutes possess antimicrobial activity against the selected test organism. In the filter paper disc diffusion plate method, out of total four metal complex, the CuL\(^1\) Cl\(_2\) complex was verified to be greatest active against the *E. coli* display inhibition zones of 15mm which was highest among all the metal complex used in the study followed by NiL\(^1\) Cl\(_2\) complex showing inhibition zone of 14mm against *Escherichia coli* and *Staphylococcus aureus*. Moderate activity was shown against four metal complex with CoL\(^1\) Cl\(_2\) and ZnL\(^1\) Cl\(_2\) displaying inhibition zone of 13-14 mm compared to both *Escherichia coli* and *Staphylococcus aureus*, respectively. Minimum activity was shown by four metal complexes of CuL\(^1\) Cl\(_2\) and ZnL\(^1\) Cl\(_2\) exhibiting 12 mm inhibition zone against *Staphylococcus aureus*. Ampicilnine and Fluconazole, used as confident controls and were verified to be less active than the metal complexes against all the test.

In case of fungi, the data shown in Figure-6 showed that out of total four metal complex shown, the NiL\(^1\) Cl\(_2\) complex was found to be most effective against both the test fungi (*Aspergillus niger* and *Candida albicans*) followed by ZnL\(^1\) Cl\(_2\) complex showing inhibition zone of 2mm against *Aspergillus niger*. Minimum activity was shown against four metal complex with CoL\(^1\) Cl\(_2\) and CuL\(^1\) Cl\(_2\) viewing inhibition zone of 1 mm in contradiction of both fungi respectively.

The consequences antibacterial action showed that the zone of habituation inclines to make the complexes performance as more controlling and potent antibacterial mediators, thus carnage more bacteria than the fungi.

Enlargement inhibitory effects of transition metal ions are significant against antibacterial activities. The behaviour of transition metal ions to allocate charge with the donor groups are reduced ahead chelating. The transition metal complexes are less effective anti-fungal agents than its metal complexes. The tetra-amide based macrocyclic complexes are newly reported and are tested for their antibacterial action against some bacteria corresponding *S. aureus*, and *E. coli* in which the metal complexes are less active against the two pathogenic microorganisms specifically *Aspergillus niger*, and *Candida albicans*. The transition metal ion complexes are vastly active against above two types of bacteria. *E. coli* was originating to give the details high action towards complexes, fairly they are active towards the complex. *Staphylococcus aureus* (*S. aureus*) was originated to be extremely active against amide complexes. The prepared compound was active towards both types of bacteria such as *Escherichia Coli* and *Staphylococcus aureus*, respectively.

Figure-5: UV-Vis spectra transition metal complexes.
Conclusion

The tetra amide macrocyclic developments make in the way with shift-metal cations, for example transition metals making through molecule self-assemblage. The FE-SEM images have been observed revealed the metal-complexes formation of rigid rod structure. In a similar manner as the rigid rods shaped from the metal complexes, the Co^{2+} were verified to shape the rigid rods by coordination with metal cations. It is concluded that in these complexes from the molecular prescription as deduced from elemental analysis. All of the verified compounds presented a noteworthy biological action against diverse types of bacteria.

Relating biological action standard and metal developments with the reference Ampicilline (an antibacterial mediator) and fluconazole (an antifungal mediator), it is perceived that: i. The biological action of transition metal complexes is reasonable in comparison with the reference used. It has less antifungal action towards test fungi. ii. The lasting metal developments have extra or less biological action that follows the direction: Nickel > Cupper ≥ Zinc > Cobalt.

Acknowledgments

Authors are grateful to AMPRI, (M.P), CSMCRI, (Gujarat), CSIR, INDIA, and the HOD of department of Microbiology BU, Bhopal for providing culture for this work. G.S.M acknowledges Director General, MPCST for an award of Young Scientist Training Fellowship for partial completion of the work. And we also acknowledge to SISTech, Bhopal (M.P.) for recording FT-IR spectra. Third author (SS) is also acknowledge...
the Zunyi Medical University, Zunyi, China for their support and facility.

References

