International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Environmental impact of engineered nanomaterials

Author Affiliations

  • 1Department of Chemistry, St. Xavier’s College - Autonomous, Mumbai 400 001, India

Res.J.chem.sci., Volume 7, Issue (8), Pages 37-43, August,18 (2017)

Abstract

Advancements in the field of nanotechnology, have led to a concomitant rise in the incorporation of nanomaterials in consumer products. Engineered nanomaterials today are already being used in diverse commercial products in the fields of energy, sensing, food technology, electronics, pharmaceuticals, cosmetics, and material applications and have an estimated global market value of €20 billion. This has given rise to concerns about the undesirable effects of this technology on the environment. This review presents an overview of published studies about likely impact of nanoparticles in the ecosystem, their ecotoxicology, threat to human health and the environment and lack of sufficient data in the Indian context.

References

  1. Guzman K.A.D., Taylor M.R. and Banfield J.F. (2006)., Environmental Risks of Nanotechnology:  National Nanotechnology Initiative Funding, 2000−2004., Environ. Sci. Technol., 40(5), 1401-1407. doi: 10.1021/es0515708
  2. UNESCO Science Report (2015)., towards 2030.,
  3. Roco M.C., Mirkin C.A. and Hersam M.C. (2011)., Nanotechnology research directions for societal needs in 2020: summary of international study., J. Nanopart. Res., 13, 897-919. doi:10.1007/s11051-011-0275-5
  4. Nowack B. and Bucheli T.D. (2007)., Occurrence, behavior and effects of nanoparticles in the environment., Environ. Pollut., 150, 5-22. doi:10.1016/j.envpol.2007.06.006
  5. Wiesner Mark R., Lowry Greg V., Alvarez Pedro, Dionysiou Dianysios and Biswas Pratim (2006)., Assessing the risks of manufactured nanoparticles., Environ. Sci. Technol., 40(14), 4336-4345. doi: 10.1021/es062726m
  6. Maynard A.D. (2007)., Nanotechnology: Overviews and Issues., Nanotechnology-Toxicological Issues and Environmental Safety, Springer Publications, Netherlands, 1-14,
  7. Roco M.C., Harthorn B., Guston D. and Shapira P. (2011)., Innovative and responsible governance of nanotechnology for societal development., Nanotechnology Research Directions for Societal Needs in 2020, Springer Netherlands, 561-617.
  8. Grieger K.D., Hansen S.F. and Baun A. (2009)., The known unknowns of nanomaterials: describing and characterizing uncertainty within environmental, health and safety risks., Nanotoxicology, 3(3), 222-233. doi: 10.1080/17435390902944069
  9. Hristozov D. and Malsch I. (2009)., Hazards and risks of engineered nanoparticles for the environment and human health., Sustainability, 1(4), 1161-1194. doi: 10.3390/su1041161
  10. Savolainen K., Alenius H., Norppa H., Pylkkanen L., Tuomi T. and Kasper G. (2010)., Risk assessment of engineered nanomaterials and nanotechnologies-a review., Toxicology, 269(2-3), 92-104. doi:10.1016/j.tox.2010.01.013
  11. Pettitt M.E. and Lead J.R. (2013)., Minimum physicochemical characterization requirements for nanomaterial regulation., Environ. Int., 52, 41-50. doi: 10.1016/j.envint.2012.11.009.
  12. Oberdörster G., Oberdörster E. and Oberdörster J. (2005)., Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles., Environmental Health Perspectives, 113, 823-839. doi:10.1289/ehp.7339
  13. Kreyling W.G., Semmler-Behnke M. and Möller W. (2006)., Health Implications of Nanoparticles., J Nanopart Res., 8(3), 543-562. doi:10.1007/s11051-005-9068-z
  14. Net Andre, Tian Xia, Mädler Lutz and Ning Li (2006)., Toxic Potential of Materials at the Nanolevel., Science, 311(5761), 622-627 doi: 10.1126/science.1114397
  15. Bergamaschi E. (2009)., Occupational exposure to nanomaterials: present knowledge and future development., Nanotoxicology, 3(3), 194-201. doi:10.1080/17435390903037038
  16. Maurer-Jones Melissa A., Gunsolus Ian L., Murphy Catherine J. and Haynes Christy L. (2013)., Toxicity of engineered nanoparticles in the environment., Analytical Chemistry, 85(6), 3036-3049. doi: 10.1021/ac303636s
  17. Hotze E.M., Phenrat T., Lowry G.V. (2010)., Nanoparticle aggregation: Challenges to understanding transport and reactivity in the environment., J. Environ. Qual., 39(6), 1909-1924.
  18. Nowack B. (2009)., The Behaviour and Effects of Nanoparticles in the Environment., Environ Pollut, 157(4), 1063-1064. doi: 10.1016/j.envpol.2008.12.019
  19. Hassellöv M., Readman J.W., Ranville J.F. and Tiede K. (2008)., Nanoparticle analysis and characterization methodologies in environmental risk assessment of engineered nanoparticles., Ecotoxicology, 17, 344-361. doi: 10.1007/s10646-008-0225-x..
  20. Tiede K., Hassellöv M., Breitbarth E., Chaudhry Q. and Boxall A.B.A. (2009)., Considerations for environmental fate and ecotoxicity testing to support environmental risk assessments for engineered nanoparticles., J.Chromatogr. A, 1216(3), 503-509. doi: 10.1016/j.chroma.2008.09.008.
  21. Lowry G.V., Gregory K.B., Apte S.C. and Lead J.R. (2012)., Transformations of nanomaterials in the environment., Environ. Sci. Technol., 46(13), 6893-6899. doi: 10,1021/es300839e.
  22. Handy R.D., von der Kammer F., Lead J.R., Hassellöv Martin, Owen Richard and Crane Mark (2008)., The ecotoxicology and chemistry of manufactured nanoparticles., Ecotoxicology, 17, 287-314. doi:10.1007/s10646-008-0199-8.
  23. Kammer Frank von der, Legros Samuel, Hofmann Thilo, Larsen Erik H. and Loeschner Katrin (2011)., Separation and characterization of nanoparticles in complex food and environmental samples by field-flow fractionation., Trends in Analytical Chemistry, 30(3), 425-436.
  24. Roth Gary A., Sahil Tahiliani, Neu‐Baker Nicole M. and Brenner Sara A. (2015)., Hyperspectral microscopy as an analytical tool for nanomaterials., Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 7(4), 565-579
  25. White Brittany, Strawbridge Andrew, Grabinski Christin M. and Hussain Saber M. (2013)., Hyperspectral imaging (HSI) to evaluate the interaction of optically active nanoparticles in biological media and cells., Bios, 84(4), 210-217.
  26. Auffan M., Rose J., Bottero J.Y., Lowry G.V., Jolivet J.P. and Wiesner M. (2009)., Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective., Nat. Nanotechnol., 4, 634-641.
  27. Wiesner M.R., Lowry G.V., Jones K.L., Hochella M.F., Di Giulio R.T., Casman E. and Bernhardt E.S. (2009)., Decreasing uncertainties in assessing environmental exposure, risk, and ecological implications of nanomaterials., Environ. Sci. Technol., 43(17), 6458-6462.
  28. Zhao F., Zhao Y., Liu Y., Chang Xueling, Chen Chunying and Zhao Yuliang (2011)., Cellular uptake, intracellular trafficking and cytotoxicity of nanomaterials., Small, 7(10), 1322-1337. doi: 10.1002/smll.201100001
  29. Kovochich M., Xia T., Xu J., Yeh J.I. and Nel A.E. (2007)., Principles and procedures to assess nanomaterial toxicity., Environmental Nanotechnology: Applications and Impacts of Nanomaterials, Mc Graw Hill, New York, 205-229 ISBN: 9780071477505.
  30. Li J., Chang X., Chen X., Gu Zhanjun, Zhao Feng, Chai Zhifang and Zhao Yuliang (2014)., Toxicity of inorganic nanomaterials in biomedical imaging., Biotechnol Adv, 32(4), 727-743. doi: 10.1016/j.biotechadv.2013.12.009
  31. Luna-Velasco A., Field J.A., Cobo-Curiel A. and Sierra-Alvarez R. (2011)., Inorganic nanoparticles enhance the production of reactive oxygen species (ros) during the autoxidation of L-3,4-dihydroxyphenylalanine (L-dopa)., Chemosphere, 85(1), 19-25. doi: 10.1016/j.chemosphere.2011.06.053.
  32. Shvedova A.A., Pietroiusti A., Fadeel B. and Kagan V.E. (2012)., Mechanisms of carbon nanotube-induced toxicity: Focus on oxidative stress., Toxicol Appl Pharmacol, 261(2), 121-133. doi: 10.1016/j.taap.2012.03.023.
  33. Choi O. and Hu Z. (2008)., Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria., Environ Sci Technol., 42(12), 4583-4588. doi: 10.1021/es703238h.
  34. Hussain S.M., Hess K.L., Gearhart J.M., Geiss K.T. and Schlager J.J. (2005)., In vitro toxicity of nanoparticles in brl 3a rat liver cells., Toxicol In Vitro, 19(7), 975-983. doi: 10.1016/j.tiv.2005.06.034.
  35. Zoroddu M., Medici S., Ledda A., Nurchi V., Lachowicz J. and Peana M. (2014)., Toxicity of nanoparticles., Current Medicinal Chem., 21, 3837-3853. doi: 10.2174/0929867321666140601162314.
  36. Handy R.D., Owen R. and Valsami-Jones E. (2008)., The ecotoxicology of nanoparticles and nanomaterials: current status, knowledge gaps, challenges, and future needs., Ecotoxicology, 17(5), 315-325. doi:10.1007/s10646-008-0206-0
  37. Oberdörster Eva, Zhu Shiqian, Blickley T. Michelle, McClellan-Green Patricia and Haasch Mary L. (2006)., Ecotoxicology of carbon-based engineered nanoparticles: effects of fullerene (C 60) on aquatic organisms., Carbon, 44(6), 1112-1120.
  38. Dhawan A., Taurozzi J.S., Pandey A.K., Shan W., Miller S.M., Hashsham S.A. and Tarabara V.V. (2006)., Stable colloidal dispersions of C60 fullerenes in water: evidence for genotoxicity., Environ. Sci. Technol., 40(23), 7394-7401. doi: 10.1021/es0609708
  39. Markovic Z., Todorovic-Markovic B., Kleut D., Nikolic N., Vranjes-Djuric S., Misirkic M., Vucicevic L., Janjetovic K., Isakovic A., Harhaji L., Babic-Stojic B., Dramicanin M. and Trajkovic V. (2007)., The mechanism of cell-damaging reactive oxygen generation by colloidal fullerenes., Biomaterials, 28(36), 5437-5448. doi: 10.1016/j.biomaterials.2007.09.002
  40. Zhang Leshuai W., Yang Jianzhong, Barron Andrew R. and Monteiro-Riviere Nancy A. (2009)., Endocytic mechanisms and toxicity of a functionalized fullerene in human cells., Toxicology Letters, 191(2-3), 149-157. doi: 10.1016/j.toxlet.2009.08.017
  41. Gharbi N., Pressac M., Hadchouel M., Szwarc H., Wilson S.R. and Moussa F. (2005)., [60] Fullerene is a powerful antioxidant in vivo with no acute or subacute toxicity., Nano Lett., 5(12), 2578-2585. doi:10.1021/nl051866b
  42. Liu Y., Zhao Y., Sun B. and Chen C. (2013)., Understanding the toxicity of carbon nanotubes., Acc Chem Res, 46(3), 702-713. doi: 10.1021/ar300028m
  43. Jackson P., Jacobsen N.R., Baun A., Birkedal Renie, Kühnel Dana, Alstrup Jensen Keld, Vogel Ulla and Wallin Hĺkan (2013)., Bioaccumulation and ecotoxicity of carbon nanotubes., Chemistry Central Journal, 7, 154. doi:10.1186/1752-153X-7-154
  44. Johnston H.J., Hutchison G.R., Christensen F.M., Peters S., Hankin S., Aschberger K. and Stone V. (2010)., A critical review of the biological mechanisms underlying the in vivo and in vitro toxicity of carbon nanotubes: The contribution of physico-chemical characteristics., Nanotoxicology, 4(2), 207-246. doi: 10.3109/17435390903569639.
  45. Jing Wang Xu, Yuanzhi Yang, Zhi Huang, Renhuan Chen, Jing Wang, Raorao Lin and Yunfeng (2013)., Toxicity of carbon nanotubes., Current Drug Metabolism, 14(8), 891-899(9).
  46. Bottero Jean-Yves, Auffan Mélanie, Rose Jérôme, Mouneyrac Catherine, Botta Céline, Labille Jérôme, Masion Armand, Thill Antoine and Chaneac Corinne (2011)., Manufactured metal and metal-oxide nanoparticles: Properties and perturbing mechanisms of their biological activity in ecosystems., Comptes Rendus Geoscience, 343(2), 168-176.
  47. Xia Tian, Kovochich Michael, Liong Monty, Mädler Lutz, Gilbert Benjamin, Shi Haibin, Yeh Joanne I., Zink Jeffrey I. and Nel Andre E. (2008)., Comparison of the Mechanism of Toxicity of Zinc Oxide and Cerium Oxide Nanoparticles Based on Dissolution and Oxidative Stress Properties., ACS Nano, 2(10), 2121-2134. doi: 10.1021/nn800511k
  48. Sharma V., Singh S.K., Anderson D., Tobin D.J., Dhawan A. (2011)., Zinc oxide nanoparticle induced genotoxicity in primary human epidermal keratinocytes., J Nanosci Nanotechnol., 11(5), 3782-3788.
  49. Sharma V., Shukla R.K., Saxena N., Parmar D., Das M. and Dhawan A. (2009)., DNA damaging potential of zinc oxide nanoparticles in human epidermal cells., Toxicol Lett., 185(3), 211-218.
  50. Lai X., Wei Y., Zhao H., Chen Suning, Bu Xin, Lu Fan, Qu Dingding, Yao Libo, Zheng Jianyong and Zhang Jian (2015)., The effect of Fe2O3 and ZnO nanoparticles on cytotoxicity and glucose metabolism in lung epithelial cells., J Appl Toxicol., 35(6), 651-664. doi: 10.1002/jat.3128.
  51. Lin W., Xu Y., Huang C.C., Shannon K.B., Chen D.R. and Huang Y.W. (2009)., Toxicity of nano- and micro-sized ZnO particles in human lung epithelial cells., J Nanopart Res., 11, 25-39. doi: 10.1007/s11051-008-9419-7
  52. Han Z., Yan Q., Ge W., Liu Zhi-Guo, Gurunathan Sangiliyandi, De Felici Massimo, Shen Wei and Zhang Xi-Feng (2016)., Cytotoxic effects of ZnO nanoparticles on mouse testicular cells., International Journal of Nanomedicine, 11, 5187-5203. doi:10.2147/IJN.S111447.
  53. Johnson B.M., Fraietta J.A., Gracias D.T., Jennifer L Hope, Stairiker Christopher J., Patel Prachi R., Mueller Yvonne M., McHugh Michael D., Jablonowski Lauren J., Wheatley Margaret A. and Katsikis Peter D. (2015)., Acute exposure to ZnO nanoparticles induces autophagic immune cell death., Nanotoxicology, 9(6), 737-748. doi: 10.3109/17435390.2014.974709.
  54. Ahamed M., Akhtar M.J., Raja M., Ahmad Iqbal, Javed Siddiqui Mohammad Kaleem, AlSalhi Mohamad S. and Alrokayan Salman A. (2011)., ZnO nanorod-induced apoptosis in human alveolar adenocarcinoma cells via p53, surviving and bax/bcl-2pathways: role of oxidative stress., Nanomedicine, 7(6), 904-913. doi: 10.1016/j.nano.2011.04.011.
  55. Ng K.W., Khoo S.P., Heng B.C., Setyawati Magdiel I., Tan Eng Chok, Zhao Xinxin, Xiong Sijing, Fang Wanru, Leong David T. and Loo Joachim S.C. (2011)., The role of the tumor suppressor p53 pathway in the cellular DNA damage response to zinc oxide nanoparticles., Biomaterials, 32(32), 8218-8225. doi: 10.1016/j.biomaterials.2011.07.036
  56. Hund-Rinke K. and Simon M. (2006)., Ecotoxic effect of photocatalytic active nanoparticles (TiO2) on algae and daphnids., Environ Sci Pollut Res., 13(4), 225-232.
  57. Federici G., Shaw B.J. and Handy R.D. (2007)., Toxicity of titanium dioxide nanoparticles to rainbow trout, (Oncorhynchus mykiss): Gill injury, oxidative stress, and other physiological effects., Aquat Toxicol, 84(4), 415-430. doi: 10.1016/j.aquatox.2007.07.009
  58. Sayes Christie M., Wahi Rajeev, Kurian Preetha A., Liu Yunping, West Jennifer L., Ausman Kevin D., Warheit David B. and Colvin Vicki L. (2006)., Correlating Nanoscale Titania Structure with Toxicity: A Cytotoxicity and Inflammatory Response Study with Human Dermal Fibroblasts and Human Lung Epithelial Cells., Toxicol. Sci., 92(1), 174-185. doi: 10.1093/toxsci/kfj197
  59. Pierzchala K., Lekka M., Magrez A., Kulik A.J., Forró L. and Sienkiewicz A. (2012)., Photocatalytic and phototoxic properties of TiO2-based nanofilaments: ESR and AFM assays., Nanotoxicology, 6(8), 813-24. doi: 10.3109/17435390.2011.625129.
  60. Montiel-Dávalos A.l., Ventura-Gallegos J.L., Alfaro-Moreno E., Soria-Castro E., García-Latorre E., Cabańas-Moreno J.G., Ramos-Godinez M.P. and López-Marure R. (2012)., TiO2 nanoparticles induce dysfunction and activation of human endothelial cells., Chem Res Toxicol., 25(4), 920-30. doi: 10.1021/tx200551u
  61. Pelclova Daniela, Zdimal Vladimir, Kacer Petr, Fenclova Zdenka, Vlckova Stepanka, Syslova Kamila, Navratil Tomas, Schwarz Jaroslav, Zikova Nadezda, Barosova Hana, Turci Francesco, Komarc Martin, Pelcl Tomas, Belacek Jaroslav, Kukutschova Jana and Zakharov Sergey (2016)., Oxidative stress markers are elevated in exhaled breath condensate of workers exposed to nanoparticles during iron oxide pigment production., J. Breath Res., 10(1), 016004. doi:10.1088/1752-7155/10/1/016004
  62. Sarma Deshpande S. (2011)., Life Cycle of a Nanosilver Based Candle Filter: Examining Issues of Toxicity, Risks, Challenges and Policy Implications., Journal of biomedical nanotechnology, 7(1), 83-84.
  63. Fabrega J., Luoma Samuel N., Tyler Charles R., Galloway Tamara S. and Lead Jamie R. (2011)., Silver nanoparticles: Behaviour and effects in the aquatic environment., Environ. Int., 37, 517-531. doi: 10.1016/j.envint.2010.10.012.
  64. Choi, O., Deng Kathy Kanjun, Kim Nam-Jung, Ross Louis, Surampalli Rao Y. and Hu Zhiqiang (2008)., The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth., Water Research, 42(12), 3066-3074. doi: 10.1016/j.watres.2008.02.021.
  65. Massarsky A., Trudeau V.L. and Moon T.W. (2014)., Predicting the environmental impact of nanosilver., Environ. Toxicol. Pharmacol., 38, 861-873. doi: 10.1016/j.etap.2014.10.006.
  66. Hsiao I.L., Hsieh Yi-Kong, Wang Chu-Fang, Chen I-Chieh and Huang Yuh-Jeen (2015)., Trojan-horse mechanism in the cellular uptake of silver nanoparticles verified by direct intra- and extracellular silver speciation analysis., Environmental Science & Technology, 49(6), 3813-3821. doi: 10.1021/es504705p.
  67. Wang Zhe, Liu Sijin, Ma Juan, Qu Guangbo, Wang Xiaoyan, Yu Sujuan, He Jiuyang, Liu Jingfu, Xia Tian and Gui- Jiang Bin (2013)., Silver nanoparticles induced RNA polymerase silver binding and RNA transcription inhibition in erythroid progenitor cells., ACS Nano, 7(5), 4171-4186. doi: 10.1021/nn400594s
  68. Adjei I.M., Sharma B. and Labhasetwar V. (2014)., Nanoparticles: Cellular uptake and cytotoxicity., Advances in Experimental Medicine & Biology, 811, 73-91. doi:10.1007/978-94-017-8739-0_5
  69. Yu S.J., Yin Y.G. and Liu J.F. (2013)., Silver nanoparticles in the environment., Environmental Science Processes & Impacts, 15, 78-92. doi 10.1039/C2EM30595J
  70. Marin Stefania, Vlasceanu George Mihail, Tiplea Roxana Elena, Bucur Ioana Raluca, Lemnaru Madalina, Marin Maria Minodora and Grumezescu Alexandru Mihai (2015)., Applications and toxicity of silver nanoparticles: A recent review., Current Topics in Medicinal Chemistry, 15(16), 1596-1604. doi: 10.2174/1568026615666150414142209
  71. Kwok Kevin W.H., Dong Wu, Marinakos Stella M., Liu Jie, Chilkoti Ashutosh, Wiesner Mark R., Chernick Melissa and Hinton David E. (2016)., Silver nanoparticle toxicity is related to coating materials and disruption of sodium concentration regulation., Nanotoxicology, 10(9), 1306-1317. doi: 10.1080/17435390.2016.1206150
  72. Guo Xiaoqing, Li Yan, Yan Jian, Ingle Taylor, Jones Margie Yvonne, Mei Nan, Boudreau Mary D., Cunningham Candice K., Abbas Mazhar, Paredes Angel M., Zhou Tong, Moore Martha M., Howard Paul C. and Chen Tao (2016)., Size- and coating-dependent cytotoxicity and genotoxicity of silver nanoparticles evaluated using in vitro standard assays., Nanotoxicology, 10(9), 1373-1384. doi: 10.1080/17435390.2016.1214764
  73. Chen Nan, He Yao, Su Yuanyuan, Li Xiaoming, Huang Qing, Wang Haifeng, Zhang Xiangzhi, Tai Renzhong and Fan Chunhai (2012)., The cytotoxicity of cadmium-based quantum dots., Biomaterials, 33(5), 1238-1244. doi: 10.1016/j.biomaterials.2011.10.070.
  74. Bottrill Melanie and Green Mark (2011)., Some aspects of quantum dot toxicity., Chem. Commun., 47(25), 7039-7050. doi: 10.1039/C1CC10692A
  75. Kang S., Mauter M.S. and Elimelech M. (2009)., Microbial cytotoxicity of carbon-based nanomaterials: Implications for river water and wastewater effluent., Environ. Sci. Technol., 43(7), 2648-2653. doi: 10.1021/es8031506
  76. Gebel Thomas, Foth Heidi, Damm Georg, Freyberger Alexius, Kramer Peter-Jürgen, Lilienblum Werner, Röhl Claudia, Schupp Thomas, Weiss Carsten, Wollin Klaus-Michael and Hengstler Jan Georg (2014)., Manufactured nanomaterials: categorization and approaches to hazard assessment., Archives of toxicology, 88(12), 2191-2211. doi:10.1007/s00204-014-1383-7
  77. Bouwmeester Hans, Lynch Iseult, Marvin Hans J.P., Dawson Kenneth A., Berges Markus, Braguer Diane, Byrne Hugh J., Casey Alan, Chambers Gordon, Clift Martin J.D., Elia Giuliano, Fernandes Teresa F., Fjellsbř Lise B., Hatto Peter, Juillerat Lucienne, Klein Christoph, Kreyling Wolfgang G., Nickel Carmen, Riediker Michael and Stone Vicki (2011)., Minimal analytical characterization of engineered nanomaterials needed for hazard assessment in biological matrices., Nanotoxicology, 5(1), 1-11, doi: 10.3109/17435391003775266
  78. Meng Huan, Xia Tian, George Saji and Nel Andre E., (2009)., A Predictive Toxicological Paradigm for the Safety Assessment of Nanomaterials., ACS Nano, 3(7), 1620-1627. doi: 10.1021/nn9005973
  79. Gottschalk F., Sonderer T., Scholz R.W. and Nowack B. (2009)., Modelled environmental concentrations of engineered nanomaterials (TiO2,ZnO, Ag, CNT, Fullerenes) for different regions., Environ. Sci. Technol., 43(24), 9216-9222. doi: 10.1021/es9015553.
  80. Kumar Prashant, Kumar Arun and Lead Jamie R. (2012)., Nanoparticles in the Indian environment: known, unknowns and awareness., Environmental Science & Technology, 46(13), 7071-7072. doi: 10.1021/es302308h
  81. Kumar P., Gurjar B.R., Nagpure A. and Harrison R.M. (2011)., Preliminary estimates of nanoparticle number emissions from road vehicles in megacity Delhi and associated health impacts., Environ. Sci. Technol., 45(13), 5514-5521.
  82. Jayanthi A.P., Beumer K. and Bhattacharya S. (2012)., Nanotechnology:Risk governance in India., Econ. Political Daily, 47(4), 34-40.
  83. Sarma Deshpande S. (2011)., How Resilient is India to Nanotechnology Risks? Examining Current Developments, Capacities and an Approach for Effective Risk Governance and Regulation., European Journal of Law and Technology, 2(3),
  84. TERI Report (2009)., Report on Regulatory Challenges Posed by Nanotechnology Developments in India., The Energy and Resources Institute, New Delhi.
  85. TERI Report (2009)., Nanotechnology Developments in India: a Status Report., The Energy and Resources Institute, New Delhi.
  86. Beumer K. and Bhattacharya S. (2013)., Emerging technologies in India: Developments, debates and silences about nanotechnology., Science and Public Policy, 40(5), 628-643. doi:10.1093/scipol/sct016.