International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

A density functional theory (DFT) calculation and vibrational analysis of smeathxanthone A

Author Affiliations

  • 1Institute of Medical Research and Medicinal Plants Studies (IMPM), P.O. Box 6163, Yaoundé, Cameroon and Department of Organic Chemistry, University of Yaoundé I, P.O Box 812, Yaoundé, Cameroon
  • 2Institute of Medical Research and Medicinal Plants Studies (IMPM), P.O. Box 6163, Yaoundé, Cameroon

Res.J.chem.sci., Volume 7, Issue (7), Pages 6-10, July,18 (2017)


Natural products are now a source of many drugs for the pharmaceutical industry. For this reason, there has been an increased focus on phytochemistry over the world, which has led to the isolation of many natural substances. Herein we report molecular structure and vibrational analysis of a secondary metabolite, smeathxanthone A. high level computational theory employing M06 coupled with 6-311G simple basis set were used. Infrared data have been computed, scaled with a standard value and compared with the experimental one. We also report Fukui functions and electrostatic potential surfaces maps to study chemically reactive moieties and qualitative structure-activity relationships (QSAR). HOMO-LUMO energy gap and optimized geometry parameters have been also computed.


  1. Peres V., Nagem T.J., and de Oliveira F.F. (2000)., Tetraoxygenated naturally occurring xanthones., Phytochemistry, 55(7), 683-710.
  2. Masters K.S., and Bräse S. (2012)., Xanthones from fungi, lichens, and bacteria: the natural products and their synthesis., Chemical reviews, 112(7), 3717-3776.
  3. Marston A., Hamburger M., Sordat-Diserens I., Msonthi J. D., and Hostettmann K. (1993)., Xanthones from Polygala nyikensis., Phytochemistry, 33(4), 809-812.
  4. Komguem J., Meli A.L., Manfouo R.N., Lontsi D., Ngounou F.N., Kuete V. and Connolly J.D. (2005)., Xanthones from Garciniasmeathmannii (Oliver) and their antimicrobial activity., Phytochemistry, 66, 1713-1717.
  5. Roberts J.C. (1961)., Naturally Occurring Xanthones., Chemical Reviews, 61(6), 591-605.
  6. Nakanishi W., Hayashi S., Kusuyama Y., Negoro T., Masuda S. and Mutoh H. (1998)., Why Selenoxanthone Gives an MC with Bromine: An Examination of Electronic States of Xanthones and Xanthenes by Electron Spectroscopy and ab Initio MO Calculations., The Journal of Organic Chemistry, 63(23), 8373-8379.
  7. Sugino T., Kambe N., Sonoda N., Sakaguchi T., and Ohta K. (1996)., Ab initio molecular orbital calculations of the static polarizabilities of xanthone analogues., Chemical physicsletters, 251(3-4), 125-131.
  8. Gonçalves N.S., Cristiano R., Pizzolatti M.G. and da Silva Miranda F. (2005)., Vibrational analysis and NMR properties based on ab initio and DFT calculations of two naturally occurring xanthones: 1, 5-dihydroxy-2, 3-dimethoxyxanthone and 1-hydroxy-5-methoxy-2, 3-methylenedioxyxanthone., Journal of molecular structure, 733(1), 53-61.
  9. Zhao Y. and Truhlar D.G. (2008)., The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals., Theor. Chem. Account., 120, 215-241.
  10. Bochevarov A.D., Harder E., Hughes T.F., Greenwood J. R., Braden D.A., Philipp D.M., Rinaldo D., Halls M.D., Zhang J. and Friesner R.A. (2013)., Jaguar: A High-Performance Quantum Chemistry Software Program with Strengths in Life and Materials Sciences., Int. J. Quantum Chem., 113(18), 2110-2142.
  11. Becke A.D. (1993)., Density‐functional thermochemistry. III. The role of exact exchange., The Journal of chemicalphysics, 98(7), 5648-5652.
  12. Lee C., Yang W. and Parr R.G. (1988)., Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density., Physical review B, 37(2), 785-789.
  13. Choudhary M.I., Swaleh R., Anjum S., Lannang A.M., Ali S. and Fun H.K. (2005)., 2-(3, 7-Dimethylocta-2, 6-dienyl)-1, 3, 5, 8-tetrahydroxyxanthone., Acta Crystallographica Section E: Structure Reports Online, 61(12), o4313-o4315.
  14. National Institute of Standards and Technology., undefined, undefined
  15. Ghosh D., Hazra S., Pal P. and Misra T.N. (1993)., Spectroscopic, dark and photoconductive properties of some polyene-iodine charge-transfer complexes., Bulletin of Materials Science, 16(2), 127-135.
  16. Politzer P. and Murray J.S. (1991)., Molecular electrostatic potentials and chemical reactivity., Reviews in Computational Chemistry, 2, 273-312.
  17. Goss D.J. and Petrucci R.H. (2007)., General Chemistry Principles and Modern Applications, Petrucci, Harwood, Herring, Madura: Study Guide., Pearson/Prentice Hall.
  18. Politzer P. and Murray J.S. (2002)., The fundamental nature and role of the electrostatic potential in atoms and molecules., Theoretical Chemistry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta), 108(3), 134-142.
  19. Gunasekaran S., Kumaresan S., Balaji R.A., Anand G. and Seshadri S. (2008)., Vibrational spectra and normal coordinate analysis on structure of chlorambucil and thioguanine., Pramana: Journal of Physics, 71(6).
  20. Sajan D., Lakshmi K.U., Erdogdu Y. and Joe I.H. (2011)., Molecular structure and vibrational spectra of 2, 6-bis (benzylidene) cyclohexanone: a density functional theoretical study., Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 78(1), 113-121.
  21. Sinha L., Prasad O., Narayan V. and Shukla S.R. (2011)., Raman, FT-IR spectroscopic analysis and first-order hyperpolarisability of 3-benzoyl-5-chlorouracil by first principles., Molecular Simulation, 37(2), 153-163.