International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

A comparison of the Minnesota family of density functionals for the calculation of conceptual DFT descriptors: citrus flavonoids as a test case

Author Affiliations

  • 1Departament de Química, Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain
  • 2Departament de Química, Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain
  • 3Departament de Química, Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain and Laboratorio Virtual NANOCOSMOS, Departamento de Medio Ambiente y Energía, Centro de Investigación en Materiales Avanzados, Chihuahua, Chih 31136, Mexico

Res.J.chem.sci., Volume 7, Issue (5), Pages 46-58, May,18 (2017)


This study illustrates the assessment of the Minnesota family of density functionals usefulness in calculating the properties and structure of molecular systems consisting of three citrus flavonoids molecules with potential to inhibit the nonenzymatic glycation of amino acids and proteins and considered antioxidants for avoiding the action of metallic ions, like Cu, Al and Fe. Conceptual DFT is used in calculating the chemical reactivity descriptors and active sites for nucleophilic and electrophilic attacks chosen by linking them to Fukui function indices, the condensed local hypersoftness (LHS) and the dual descriptor&


  1. Parr R. and Yang W. (1989)., Density-Functional Theory of Atoms and Molecules., Oxford University Press, New York.
  2. Geerlings P., Proft De F. and Langenaeker W. (2003)., Conceptual Density Functional Theory., Chemical Reviews, 103(5), 1793-1873.
  3. Torrent-Sucarrat M., Blancafort L., Duran M., Luis J.M. and Solà M. (2007)., Theoretical Aspects of Chemical Reactivity., Elsevier Science, Amsterdam, 19, 31.
  4. Chattaraj P. (2009)., Chemical Reactivity Theory - A Density Functional View., CRC Press. Taylor & Francis Group, Boca Raton.
  5. Politzer P. and Murray J. (2002)., The Fundamental Nature and Role of the Electrostatic Potential in Atoms and Molecules., Theoretical Chemistry Accounts, 108(3), 134-142.
  6. Murray J. and Politzer P. (2011)., The Electrostatic Potential: An Overview., WIREs Computational Molecular Science, 1(2), 153-163.
  7. Huzinaga S., Andzelm J., Klobukowski M., Radzio-Audzelm E. (1984)., Sakai; Y.; Tatewaki, H., Gaussian Basis Sets for Molecular Calculations, Elsevier, Amsterdam.
  8. Easton R., Giesen D., Welch A., Cramer C. and Truhlar D. (1996)., The MIDI! Basis Set for Quantum Mechanical Calculations of Molecular Geometries and Partial Charges., Theoretical Chemistry Accounts, 93(5), 281-301.
  9. Lewars E. (2016)., Computational Chemistry - Introduction to the Theory and Ap- plications of Molecular and Quantum Mechanics., Kluwer Academic Publishers, Dordrecht, 2003.
  10. Young D. (2001)., Computational Chemistry - A Practical Guide for Applying Techniques to Real-World Problems., John Wiley & Sons, New York.
  11. Jensen F. (2007)., Introduction to Computational Chemistry., 2nd Edition, John Wiley & Sons, Chichester, England.
  12. Cramer C. (2013)., Essentials of Computational Chemistry - Theories and Models., 2nd Edition, John Wiley & Sons, Chichester, England.
  13. Kronik L., Stein T., Refaely-Abramson S. and Baer R. (2012)., Excitation Gaps of Finite-Sized Systems from Optimally Tuned Range-Separated Hybrid Functionals., Journal of Chemical Theory and Computation, 8(5), 1515- 1531.
  14. Perdew J., Parr R., Levy M. and Balduz L.J. (1982)., Density-Functional Theory for Fractional Particle Number: Derivative Discontinuities of the Energy., Physical Review Letters, 49(23), 1691-1694.
  15. Almbladh C.O. and Barth von U. (1985)., Exact Results for the Charge and Spin Densities, Exchange-Correlation Potentials, and Density-Functional Eigenvalues., Physical Review B., 31(6), 3231-3244.
  16. Perdew J., Burke K. and Ersernhof M. (1996)., Generalized Gradient Approximation Made Simple., Physical Review Letters, 77(18), 3865.
  17. Levy M., Perdew J.P. and Sahni V. (1984)., Exact Differential Equation for the Density and Ionization Energy of a Many-Particle System., Physical Review A, 30(5), 2745-2748.
  18. Savin A. (2011)., Beyond the Kohn - Sham Determinant., Recent Advances in Density Functional Methods, World Scientific, Ch. 4, 129-153.
  19. Leininger T., Stoll H., Werner H.-J., Savin A. (1997)., Combining Long-Range Configuration Interaction with Short-Range Density Functionals., Chemical Physics Letters, 275(3-4), 151-160.
  20. Savin A. and Flad H.J. (1995)., Density Functionals for the Yukawa Electron-Electron Interaction., International Journal of Quantum Chemistry, 56(4), 327-332.
  21. Lima I.T., Prado A.d.S., Martins J.B.L., Neto de Oliveira P.H., Ceschin A.M., Cunha da W.F. and Silva Filho da D.A. (2016)., Improving the Description of the Optical Properties of Carotenoids by Tuning the Long-Range Cor- rected Functionals., The Journal of Physical Chemistry A, 120(27), 4944-4950.
  22. Peverati R. and Truhlar D.G. (2014)., Quest for a Universal Density Functional: The Accuracy of Density Functionals Across a Broad Spectrum of Databases in Chemistry and Physics., Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences, 372, 20120476.
  23. Marín F., Frutos M., Pérez-Alvarez J., Martinez-Sánchez F. and Río J.D. (2002)., Flavonoids as Nutraceuticals: Structural Related Antioxidant Properties and Their Role on Ascorbic Acid Preservation., in: A. Rahman (Ed.), Bioactive Natural Products, Vol. 26, Part G of Studies in Natural Products Chemistry, 26, 741-778.
  24. Parr R. and Yang W. (1984), Density Functional Approach to the Frontier-Electron Theory of Chemical Reactivity., Journal of the American Chemical Society, 106(14), 4049-4050.
  25. Janak J. (1978)., Proof that ∂E/∂ni= ε in Density Functional Theory., Physical Review B, 18(12), 7165-7168.
  26. Zevallos J. and Toro-Labbé A. (2003)., A Theoretical Analysis of the Kohn-Sham and Hartree-Fock Orbitals and their Use in the Determination of Electronic Properties., Journal of the Chilean Chemical Society, 48(4), 39-47.
  27. Gázquez J., Cedillo A. and Vela A. (2007)., Electrodonating and Electroaccepting Powers., Journal of Physical Chemistry A, 111(10), 1966-1970.
  28. Chattaraj P., Chakraborty A. and Giri S. (2009)., Net Electrophilicity., Journal of Physical Chemistry A, 113 (37), 10068-10074.
  29. Ayers P. (2008)., The Dependence on and Continuity of the Energy and other Molecular Properties with respect to the Number of Electrons., Journal of Mathematical Chemistry, 43, 285-303.
  30. Fuentealba P., Pérez P. and Contreras R. (2000)., On the Condensed Fukui Function., Journal of Chemical Physics, 113(7), 2544-2551.
  31. Bulat F., Chamorro R., Fuentealba P. and Toro-Labbé A. (2004)., Condensation of Frontier Molecular Orbital Fukui Functions., Journal of Physical Chemistry A, 108(2), 342-349.
  32. Morell C., Grand A. and Toro-Labbé A. (2005)., New Dual Descriptor for Chemical Reactivity., Journal of Physical Chemistry A, 109, 205-212.
  33. Morell C., Grand A. and Toro-Labbé A. (2006)., Theoretical Support for Using the ∆f(r) Descriptor., Chemical Physics Letters, 425(4), 342-346.
  34. Cárdenas C., Rabi N., Ayers P., Morell C., Jaramillo P. and Fuentealba P. (2009)., Chemical Reactivity Descriptors for Ambiphilic Reagents: Dual Descriptor, Local Hypersoftness, and Electrostatic Potential., Journal of Physical Chemistry A, 113(30), 8660-8667.
  35. Ayers P., Morell C., De Proft F., Geerlings P. (2007)., Understanding the Woodward-Hoffmann Rules by Using Changes in Electron Density., Chemistry - A European Journal, 13(29), 8240-8247.
  36. Morell C., Ayers P., Grand A., Gutiérrez-Oliva S. and Toro-Labbé A. (2008)., Rationalization of the Diels-Alder Reactions through the Use of the Dual Reactivity Descriptor ∆f(r)., Physical Chemistry Chemical Physics, 10(48), 7239-7246.
  37. Morell C., Hocquet A., Grand A. and Jamart-Gregoire B. (2008)., A Conceptual DFT Study of Hydrazino Peptides: Assessment of the Nucleophilicity of the Nitrogen Atoms by Means of the Dual Descriptor ∆f (r)., Journal of Molecular Structure:THEOCHEM, 849, 46-51.
  38. Pearson R. (1993)., The Principle of Maximum Hardness., Accounts of Chemical Research, 26(5), 250-255.
  39. Chermette H. (1999)., Chemical Reactivity Indexes in Density Functional Theory., Journal of Computational Chemistry, 20, 129-154.
  40. Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Peters-son G.A., Nakatsuji H., Caricato M., Li X., Hratchian H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnenberg J.L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J.A., Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Rega N., Millam J.M., Klene M., Knox J.E., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Martin R.L., Morokuma K., Zakrzewski V.G., Voth G.A., Salvador P., Dannenberg J.J., Dapprich S., Daniels A.D., Farkas O., Foresman J.B., Ortiz J.V., Cioslowski J. and Fox D.J. (2008)., Gaussian 09 Revision D.01, Gaussian Inc., Wallingford CT, 2009., Theor. Chem. Acc, 120, 215.
  41. Weigend F. and Ahlrichs R. (2005)., Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy., Physical Chemistry Chemical Physics, 7(18), 3297-3305.
  42. Weigend F. (2006)., Accurate Coulomb-fitting Basis Sets for H to Rn., Physical Chemistry Chemical Physics, 8(9), 1057-1065.
  43. Peverati R. and Truhlar D.G. (2011)., Improving the Accuracy of Hybrid Meta-GGA Density Functionals by Range Separation., The Journal of Physical Chemistry Letters, 2(21), 2810-2817.
  44. Peverati R. and Truhlar D.G. (2012)., M11-L: A Local Density Functional That Provides Improved Accuracy for Electronic Structure Calculations in Chemistry and Physics., The Journal of Physical Chemistry Letters, 3(1), 117-124.
  45. Peverati R. and Truhlar D.G. (2012)., An Improved and Broadly Accurate Local Approximation to the Exchange-Correlation Density Functional: the MN12-L Functional for Electronic Structure Calculations in Chemistry and Physics., Physical Chemistry Chemical Physics, 14(38), 13171-13174.
  46. Peverati R. and Truhlar D.G. (2012)., Screened-Exchange Density Functionals with Broad Accuracy for Chemistry and Solid-State Physics., Physical Chemistry Chemical Physics, 14(47), 16187-16191.
  47. Peverati R. and Truhlar D.G. (2012)., Exchange-Correlation Functional with Good Accuracy for Both Structural and Energetic Properties while Depending Only on the Density and Its Gradient., Journal of Chemical Theory and Computation, 8(7), 2310-2319.
  48. Peverati R., Zhao Y. and Truhlar D.G. (2011)., Generalized Gradient Approximation That Recovers the Second-Order Density-Gradient Expansion with Optimized Across-the-Board Performance., The Journal of Physical Chemistry Letters, 2(16), 1991-1997.
  49. Peverati R. and Truhlar D.G. (2011)., Communication: A Global Hybrid Generalized Gradient Approximation to the Exchange-Correlation Functional That Satisfies the Second-Order Density-Gradient Constraint and Has Broad Applicability in Chemistry., The Journal of Chemical Physics, 135(19), 191102.
  50. Marenich A., Cramer C. and Truhlar D. (2009)., Universal Solvation Model Based on Solute Electron Density and a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions., Journal of Physical Chemistry B, 113(18), 6378-6396.
  51. Allouche A. (2011)., Gabedit – A Graphical User Interface for Computational Chemistry Softwares., Journal of Computational Chemistry, 32(1), 174-182.
  52. Gorelsky S. (2011)., AOMix Program for Molecular Orbital Analysis - Version 6.5, university of Ottawa, Ottawa, Canada (2011).,
  53. Gorelsky S. and Lever A. (2001)., Electronic Structure and Spectra of Ruthenium Di-imine Complexes by Density Functional Theory and INDO/S - Comparison of the Two Methods., Journal of Organometallic Chemistry, 635(1-2), 187-196.
  54. Gázquez J.L. (2009)., Chemical Reactivity Concepts in Density Functional Theory., in: P. K. Chattaraj (Ed.), Chemical Reactivity Theory: A Density Functional View, CRC Press - Taylor & Francis Group, Boca Raton, Fl., 2009, Ch. 2, 7-21.