International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Physicochemical and mechanical characterization of Benin’s Kenaf fibers and its effect on the building compressed Earth Blocks (CEB) mechanical properties

Author Affiliations

  • 1Laboratoire d’Etude et de Recherche en Chimie Appliquée, Ecole Polytechnique d’Abomey-Calavi, Université d’Abomey-Calavi, 01 BP 2009 Cotonou, République du Bénin, Equipe Structure et Comportement Thermomécanique des Matériaux (ESTM) du Crismat, UMR 6508, Ensicaen, 6 boulevard du Maréchal Juin, 14050 Caen Cedex 4, France & Laboratoire de Chimie Inorganique et de l\'Environnement (LACIE), Département de Chimie, Faculté des Sciences et Techniques Université d’Abomey-Calavi, 01 BP 4521 Cotonou, République du Bénin
  • 2Equipe Structure et Comportement Thermomécanique des Matériaux (ESTM) du Crismat, UMR 6508, Ensicaen, 6 boulevard du Maréchal Juin, 14050 Caen Cedex 4, France
  • 3Laboratoire de Chimie Inorganique et de l\'Environnement (LACIE), Département de Chimie, Faculté des Sciences et Techniques Université d’Abomey-Calavi, 01 BP 4521 Cotonou, République du Bénin
  • 4Laboratoire de Chimie Inorganique et de l\'Environnement (LACIE), Département de Chimie, Faculté des Sciences et Techniques Université d’Abomey-Calavi, 01 BP 4521 Cotonou, République du Bénin
  • 5Institut de Recherche en Génie Civil et Mécanique UMR 6183 Technologie des Matériaux (GeM), France
  • 6Institut de Recherche en Génie Civil et Mécanique UMR 6183 Technologie des Matériaux (GeM), France
  • 7Laboratoire d’Etude et de Recherche en Chimie Appliquée, Ecole Polytechnique d’Abomey-Calavi, Université d’Abomey-Calavi, 01 BP 2009 Cotonou, République du Bénin

Res.J.chem.sci., Volume 7, Issue (2), Pages 6-15, February,18 (2017)

Abstract

The physical, chemical and mineralogical characteristics of Kenaf fibers from the Republic of Benin were studied by using the X-ray diffraction (XRD), infrared spectroscopy (IR), thermal gravimetric analysis coupled withdifferential scanning calorimetry (TGA/DSC) and chemical analysis using the method of VAN Soest. It emerged from study that the fibers of Kenaf essentially consisted of cellulose (73wt %), hemicelluloses (18 wt%) and lignin (6 wt%). Kenaf fibers of 10, 20 and 30 mm lengthwere used at dose rate of 1.2% weight to reinforce the mechanical and thermal properties of Compressed Earth Blocks (CEB)developed from a clay soil;constituted of kaolinite (33, 46wt%); illite (14.90wt%%); microcline (2.11wt%); quartz (48.78wt%) and 0.86wt% of anatase. The incorporation of Kenaf fibers permitted to reduce the distribution of cracks in CEB. Analysis of the mechanical behavior of different formulations soil/fiber in terms of flexural strength and compression demonstrated the beneficial effect of the fibers. The best result of mechanical strength standpoint was obtained with the fibers length of 30 mm. Here we successfully proved that it is possible to improve the mechanical and thermal properties of CEBby using fibers for reinforcement; and the composite can be optimized by altering the fiber content and length.

References

  1. Millogo Y., Aubert J.E., Hamard E. and Morel J.C. (2015)., How Properties of Kenaf Fibers from Burkina Faso Contribute to the Reinforcement of Earth Blocks., Materials, 8(5), 2332-2345.
  2. Binici H., Aksogan O. and Shah T. (2005)., Investigation of fiber reinforced mud bricks as a building material., Constr. Build. Mater. 19(4), 313-318.
  3. Ghavami K., Toledo Filho R.D. and Barbosa N.P. (1999)., Behaviour of composite soil reinforced with natural fibres., Cem. Concr. Compos. 21(1), 39-48.
  4. Toledo Filho R.D., Ghavami K., England G.L. and Scrivener K. (2003)., Development of vegetable fiber-mortar composites of improved durability., Cem. Concr. Compos. 25(2), 185-196.
  5. Mesbah A., Morel J.C., Walker P. and Ghavami K. (2004)., Development of a direct tensile test for compacted soil blocks reinforced with natural fibers., J. Mater. Civil Eng., 16(1), 95-98.
  6. Bouhicha M., Aouissi F. and Kenai S. (2005)., Performance of composite soil reinforced with barley straw., Cem. Concr. Compos., 27(5), 617-621.
  7. Kumar A., Walia S.B., Mohan J. (2006)., Compressive strength of fiber reinforced highly compressible clay., Constr. Build. Mater., 20(10), 1063-1068.
  8. Yetgin S., Cavdar O. and Cavdar A. (2008)., The effects of the fiber contents on the mechanic properties of the adobes., Constr. Build. Mater., 22(3), 222-227.
  9. Juárez C., Guevara B. and Durán-Herrera A. (2010)., Mechanical properties of natural fibers reinforced sustainable masonry., Constr. Build. Mater., 24(8), 1536-1541.
  10. Ismail S. and Yaacob Z. (2011)., Properties of laterite bricks reinforced with oil palm empty fruit bunch fibres., Pertanika J. Sci. Technol. 19(1), 33-43.
  11. Quagliarini E. and Lenci S. (2010)., The influence of natural stabilizers and natural fibres on the mechanical properties of ancient Roman adobe bricks., J. Cult. Herit. 11(3), 309-314.
  12. Shin H.K., Jeun J.P., Kim H.B. and Kang P.H. (2012)., Isolation of cellulose fibers from Kenaf using electron beam., Radiat. Phys. Chem., 81(8), 936-940.
  13. Jonoobi M., Harun J., Tahir P.M., Shakeri A., Saiful Azry S. and Makinejad M.D. (2011)., Physicochemical characterization of pulp and nanofibers from Kenaf stem., Mater. Lett., 65(7), 1098-1100.
  14. Akil H.M., Omar M.F., Mazuki A.A.M., Safiee S., Ishak Z.A.M. and Abu Bakar A. (2011)., Kenaf fiber reinforced composites: A review., Mater. Des., 32(8), 4107-4121.
  15. Van Soest P.D. and Wine R.H. (1967)., The use of detergents in the analysis of fibrous feed II. A rapid method for determination of fiber and lignin., J. Assoc. Off. Agric. Chem., 50(1), 50-55.
  16. Fulgencio S.C., Jaime C. and Juan G.R. (1983)., Determination of hemicelluloses, cellulose, and lignin contents of dietary fibre and crude fiber of several seed hulls., Data Comp., 177, 200-202.
  17. Toledo Filho R.D. (1997)., Natural Fiber Reinforced Mortar Composites: Experimental, Characterisation., Ph.D. Thesis, DEC-PUC/Imperial College, London, UK, 472.
  18. NF EN (2006)., Méthodes d’essais des ciments - Partie 1: détermination des résistances mécaniques., Avril, 26.
  19. Segal L., Creely J.J., Martin Jr.E.A. and Conrad C.M. (1958)., An Empirical Method for Estimating the Degree of Cristallinity of Native Cellulose using the X-Ray Diffractometer., Textile Research Journal, 29(10), 786-794.
  20. Aubert J.E., Maillard P., Morel J.C. and Al Rafii M. (2015)., Towards a simple compressive strength test for earth bricks., Mater. Struct., 49(5), 1641-1654. doi: 10.1617/s11527-015-0601-y.
  21. Aubert J.E., Fabbri A., Morel J.C. and Maillard P. (2013)., A earth block with a compressive strength higher than 45 MPa., Constr. Build. Mater., 47, 366-369.
  22. Olivier M. and Mesbah A. (1995)., Modèle de comportement pour sols compactés., In Proceedings of the First International Conference on unsaturated soils, Paris, France, 68.
  23. Mouhoubie S. (2008)., Caractérisation de l’interface d’un composite fibre végétale/polypropylene., thése Magister ,UnviersitéFarhat Abbas, Algérie, mécanique appliqué.
  24. Anthony T. (2011)., Approche multi-échelle de la structure et du comportement mécanique de la fibre de lin., thèse de doctorat, Université de Caen Basse-Normandie, France, Chimie des Matériaux.
  25. Kouakou H. and Morel J.C. (2009)., Strength and elasto-plastic properties of non-industrial building materials manufactured with clay as a natural binder., Appl Clay Sci., 44(1), 27-34.
  26. Ghavami K., Toledo Filho R.D. and Barbosa N.P. (1999)., Behaviour of composite soil reinforced with natural fibres., CemConcr Compos., 21(1), 39-48.
  27. Juárez C., Guevara B. and Durán-Herrera A. (2010)., Mechanical properties of natural fibers reinforced sustainable masonry., Construc Build Mater., 24(8), 1536-1541.
  28. Ismail S. and Yaacob Z. (2011)., Properties of laterite bricks reinforced with oil palm empty fruit bunch fibres., Pertanika J SciTechnol, 19(1), 33-43.
  29. Younoussa M., Jean-Claude M., Jean-Emmanuel A. and Khosrow G. (2014)., Experimental analysis of Pressed Adobe Blocks reinforced with Hibiscus cannabinus fibers., Construction and Building Materials, 52, 71-78.
  30. Godin B., Ghysel F., Agneessens R., Schmit T., Gofflot S., Lamaudière S., Sinnaeve G., Goffart J.P., Gerin P.A. and Stilmant D. (2010)., Détermination de la cellulose, des hémicelluloses, de la lignine et des cendres dans diverses cultures lignocellulosiques dédiées à la production de bioéthanol de deuxième génération/Cellulose, hemicelluloses, lignin, and ash contents in various lignocellulosic crops for second generation bioethanol production., Biotechnol. Agron. Soc. Environ., 14, 549-560.
  31. Morel J.C. and Gourc J.P. (1997)., Behavior of sand reinforced with mesh elements., Geosynth. Int., 4(5), 481-508.
  32. Bledzki K.A. and Gassan J. (1999)., Composites reinforced with cellulose based fibers., Progress in Polymer Science, 24(2), 221-274.
  33. Baley C. (2002)., Analysis of the flax fibers tensile behavior and analysis of the tensile stiffness increase., Composites: Part A, 33(7), 939-948.
  34. Khalil A., Rozman H.D., Ahmad N.N. and Ismail H. (2000)., Acetylated plant-fiber-reinforced polyester composite: a study of mechanical, hydrothermal, and aging characteristics., Polymer-plastics technology and engineering, 39(4), 757-781.
  35. Davies P., Morvan C., Sire O. and Baley C. (2007)., Structure and properties of fibers from sea-grass (Zostera marina)., Journal of Materails Science, 42(13), 4850-4857.
  36. Dupeyre D. and Vignon M.R. (1998)., Fibers from semi-retted bundles by stream explosion treatment., Biomass & Bioenergy, 14(3), 251-260.
  37. Batra S.K. (1998)., Other long vegetable fibers Handbook of fiber chemistry., Lewin (M.), Pearce (E.M.), editors. Handbook of fibre Science and TechnologyNew York. Marcel Dekker, Fiber Chemistry, 5, 505-575.
  38. Sedan D. (2007)., Etude des interactions physico-chimiques aux interfaces fibres de chanvre/ciment. Influence sur les propriétés mécaniques du composite., Thèse de doctorat de l’Université de Limoges.
  39. Korte S. and Staiger M.P. (2008)., Effect of processing route on the composition and properties of hemp fiber., Fibers and Polymers, 9(5), 593-603.
  40. Ramakrishna G. and Sundararajan T. (2005)., Studies on the durability of natural fibers and the effect of corroded fibers on the strength of mortar., Cement and Concrete Composites, 27(5), 575-582.
  41. Toledo Filho R.D., Andrada Silva F. de, Fairbain E.M.R. and Almeida MeloFilho De J. (2009)., Durability of compression molded sisal fiber reinforced mortar laminates., Construction and Building Materials, 23(6), 2409-2420.