8th International Science Congress (ISC-2018).  International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Removal of fluoroquinolone antibiotic, ofloxacine, by adsorption on titaniferous sand

Author Affiliations

  • 1Laboratory of Electrochemistry and Membrane Processes, ESP, CAD University of Dakar (UCAD) Po. Box 5085 Dakar-Fann, Senegal
  • 2Laboratory of Electrochemistry and Membrane Processes, ESP, CAD University of Dakar (UCAD) Po. Box 5085 Dakar-Fann, Senegal
  • 3Laboratory of Electrochemistry and Membrane Processes, ESP, CAD University of Dakar (UCAD) Po. Box 5085 Dakar-Fann, Senegal
  • 4Laboratory of Electrochemistry and Membrane Processes, ESP, CAD University of Dakar (UCAD) Po. Box 5085 Dakar-Fann, Senegal
  • 5Laboratory of Electrochemistry and Membrane Processes, ESP, CAD University of Dakar (UCAD) Po. Box 5085 Dakar-Fann, Senegal

Res.J.chem.sci., Volume 7, Issue (11), Pages 8-14, November,18 (2017)

Abstract

The elimination of fluoroquinolone antibiotic, ofloxacine, was carried out by adsorption on titaniferous sand with a 58% content of TiO2. Various parameters such as contact time, sand concentration and initial pH influencing the adsorption of the antibiotic were optimized. Thus, the adsorption equilibrium was obtained after 100 minutes and the kinetics followed the second pseudo order model. The removal of the ofloxacine was better at a pH of 6.5 for a sand concentration of 160 g / L. Among the isothermal models tested, to represent the experimental results, the Langmuir model better described the adsorption process with a maximum adsorption capacity of 1.1383 mg/g and a kinetic constant of 0.0389 L / mg.

References

  1. Feng M., Wang X., Chen J., Qu R., Sui Y., Cizmas L. and Sharma V.K. (2016)., Degradation of fluoroquinolone antibiotics by ferrate (VI): effects of water constituents and oxidized products., Water research, 103, 48-57. doi:10.1016/j.watres.2016.07.014.
  2. de Lastours Victoire and Fantin B. (2015)., Impact of fluoroquinolones on human microbiota. Focus on the emergence of antibiotic resistance., Future Microbiol, 10(7), 1241-1255. doi:10.2217/fmb.15.40.
  3. Van Boeckel T.P., Gandra S., Ashok A., Caudron Q., Grenfell B.T., Levin S.A. and Laxminarayan R. (2014)., Global antibiotic consumption 2000 to 2010: an analysis of national pharmaceutical sales data., The Lancet Infectious Diseases, 14(8), 742-750.
  4. Liu X., Liu Y., Xu J-R., Ren K-J. and Meng X-Z. (2016)., Tracking aquaculture-derived fluoroquinolones in a mangrove wetland, South China., Environ Pollut, 219, 916-923. doi:10.1016/j.envpol.2016.09.011.
  5. Luo Y., Xu L., Rysz M., Wang Y., Zhang H. and Alvarez P.J.J. (2011)., Occurrence and transport of tetracycline, sulfonamide, quinolone, and macrolide antibiotics in the Haihe River Basin, China., Environ Sci Technol, 45(5), 1827-1833. doi:10.1021/es104009s.
  6. Le-Minh N., Khan S.J., Drewes J.E. and Stuetz R.M. (2010)., Fate of antibiotics during municipal water recycling treatment processes., Water Res, 44(15), 4295-4323. doi:10.1016/j.watres.2010.06.020.
  7. Massey L.B., Haggard B.E., Galloway J.M., Loftin K.A., Meyer M.T. and Green W.R. (2010)., Antibiotic fate and transport in three effluent-dominated Ozark streams., Ecol Eng, 36(7), 930-938. doi:10.1016/j.ecoleng.2010.04.009.
  8. Zhang H., Liu P., Feng Y. and Yang F. (2013)., Fate of antibiotics during wastewater treatment and antibiotic distribution in the effluent-receiving waters of the Yellow Sea, northern China., Mar Pollut Bull, 73(1), 282-290. doi: 10.1016/j.marpolbul. 2013.05.007.
  9. Manzetti S. and Ghisi R. (2014)., The environmental release and fate of antibiotics., Mar Pollut Bull, 79(1–2), 7-15. doi:10.1016/j.marpolbul.2014.01.005.
  10. Okay O.S., Li K., Yediler A. and Karacik B. (2012)., Determination of selected antibiotics in the Istanbul strait sediments by solid-phase extraction and high performance liquid chromatography., J Environ Sci Health Part A, 47(10), 1372-1380. doi:10.1080/10934529.2012.672303.
  11. Liu P., Zhang H., Feng Y., Yang F. and Zhang J. (2014)., Removal of trace antibiotics from wastewater: A systematic study of nanofiltration combined with ozone-based advanced oxidation processes., Chem Eng J, 240, 211-220. doi:10.1016/j.cej.2013.11.057.
  12. Liu P., Zhang H., Feng Y., Shen C. and Yang F. (2015)., Integrating electrochemical oxidation into forward osmosis process for removal of trace antibiotics in wastewater., J Hazard Mater, 296, 248-255. doi:10.1016/j.jhazmat.2015.04.048.
  13. Feng M., Qu R., Zhang X., Sun P., Sui Y., Wang L. and Wang Z. (2015)., Degradation of flumequine in aqueous solution by persulfate activated with common methods and polyhydroquinone-coated magnetite/multi-walled carbon nanotubes catalysts., Water Res, 85, 1-10. doi:10.1016/j.watres.2015.08.011.
  14. Hu X., Zhang H. and Sun Z. (2017)., Adsorption of low concentration ceftazidime from aqueous solutions using impregnated activated carbon promoted by Iron, Copper and Aluminum., Appl Surf Sci, 392, 332-341. doi:10.1016/j.apsusc.2016.09.047.
  15. Gao J., Chen J., Li X., Wang M., Zhang X., Tan F. and Liu J. (2015)., Azide-functionalized hollow silica nanospheres for removal of antibiotics., J Colloid Interface Sci, 444, 38-41. doi:10.1016/j.jcis.2014.12.054.
  16. El Bakouri H., Morillo J., Usero J., Vanderlinden E. and Vidal H. (2015)., Effectiveness of acid-treated agricultural stones used in biopurification systems to avoid pesticide contamination of water resources caused by direct losses: mathematical modelling and thermodynamical study., J Environ Solut, 3, 11-18.
  17. Ahmad A., Razali M.H., Mamat M., Mehamod F.S.B. and Amin K.A.M. (2017)., Adsorption of methyl orange by synthesized and functionalized-CNTs with 3-aminopropyltriethoxysilane loaded TiO2 nanocomposites., Chemosphere, 168, 474-482. doi:10.1016/j.chemosphere.2016.11.028.
  18. López-Muñoz M.J., Arencibia A., Segura Y. and Raez J.M. (2017)., Removal of As(III) from aqueous solutions through simultaneous photocatalytic oxidation and adsorption by TiO2 and zero-valent iron., Catal Today, 280, Part 1, 149-154. doi:10.1016/j.cattod.2016.05.043.
  19. Givens B.E., Xu Z., Fiegel J. and Grassian V.H. (2017)., Bovine serum albumin adsorption on SiO2 and TiO2 nanoparticle surfaces at circumneutral and acidic pH: A tale of two nano-bio surface interactions., J Colloid Interface Sci, 493, 334-341. doi:10.1016/j.jcis.2017.01.011.
  20. Hernández-Ramírez E., Wang J.A., Chen L.F., Valenzuela M.A. and Dalai A.K. (2017)., Partial oxidation of methanol catalyzed with Au/TiO2, Au/ZrO2 and Au/ZrO2-TiO2 catalysts., Appl Surf Sci, 399, 77-85. doi:10.1016/j.apsusc.2016.12.068.
  21. Lv J-F., Zhang H-P., Tong X., Fan C-L., Yang W-T. and Zheng Y-X. (2017)., Innovative methodology for recovering titanium and chromium from a raw ilmenite concentrate by magnetic separation after modifying magnetic properties., J Hazard Mater, 325, 251-260. doi:10.1016/j.jhazmat.2016.11.075.
  22. Loosli F., Coustumer P.L. and Stoll S. (2014)., Effect of natural organic matter on the disagglomeration of manufactured TiO2 nanoparticles., Environ Sci Nano, 1(2), 154-160. doi:10.1039/C3EN00061C.
  23. Sbaa M., Chergui H., Melhaoui M. and Bouali A. (2011)., Tests d’adsorption des métaux lourds (Cd, Cu, Ni, Pb, Zn) sur des substrats organiques et minéraux de la ville d’Oujda., Rev Marocaine Sci Agron Vét, 21(2), 109-119.
  24. Giraldo A.L., Peñuela G.A., Torres-Palma R.A., Pino N.J., Palominos R.A., Mansilla H.D. (2010)., Degradation of the antibiotic oxolinic acid by photocatalysis with TiO2 in suspension., Water Res, 44(18), 5158-5167. doi:10.1016/j.watres.2010.05.011.
  25. Bulut Y. and Aydın H. (2006)., A kinetics and thermodynamics study of methylene blue adsorption on wheat shells., Desalination, 194(1), 259-267. doi:10.1016/j.desal.2005.10.032.
  26. Deng H., Yang L., Tao G. and Dai J. (2009)., Preparation and characterization of activated carbon from cotton stalk by microwave assisted chemical activation—Application in methylene blue adsorption from aqueous solution., J Hazard Mater, 166(2–3), 1514-1521. doi:10.1016/j.jhazmat.2008.12.080.
  27. Benjwal P., Sharma R. and Kar K.K. (2016)., Effects of surface microstructure and chemical state of featherfiber-derived multidoped carbon fibers on the adsorption of organic water pollutants., Mater Des, 110, 762-774. doi:10.1016/j.matdes.2016.08.030.
  28. Kim S-H, Ngo H.H., Shon H.K. and Vigneswaran S. (2008)., Adsorption and photocatalysis kinetics of herbicide onto titanium oxide and powdered activated carbon., Sep Purif Technol, 58(3), 335-342. doi:10.1016/j.seppur.2007.05.035.
  29. Alahiane S., Qourzal S., El Ouardi M., BELMOUDEN A.A. and AIT-ICHOU Y. (2013)., Adsorption et photodégradation du colorant indigo carmine en milieu aqueux en présence de TiO2/UV/O2 (Adsorption and photocatalytic degradation of indigo carmine dye in aqueous solutions using TiO2/UV/O2)., J Mater Env Sci, 4(2), 239-250.