Synthesis, Characterization and Antimicrobial Screening of Azo Compounds containing 4-hydroxybenzaldehyde Moiety

Pagariya S.K.*, Pathade R.M. and Bodkhe P.S.
Department of Chemistry, Vidyabharati Mahavidyalaya, Amravati-444602, Maharashtra, India
sushilpagariya@gmail.com

Available online at: www.isca.in, www.isca.me
Received 22nd March 2016, revised 24th August 2016, accepted 4th September 2016

Abstract
Some azo compounds (1a-e) were synthesized by simple diazotization reaction of five different substituted aromatic amines using sodium nitrite and hydrochloric acid followed by coupling with 4-hydroxybenzaldehyde in alkaline medium. Synthesized azo compounds have been confirmed by UV, IR and 1H NMR spectral data and also screened for their antibacterial activity using disc diffusion method.

Keywords: Azo compounds, 4-hydroxybenzaldehyde, Diazoatization, Antimicrobial screening.

Introduction
Out of the different classes of dyes, azo dyes constitutes one of the largest and important class of synthetic organic compounds containing an azo N=N group generally connected to aromatic rings. Mostly, synthesis of azo compounds involves diazotization of substituted primary aromatic amines followed by coupling with nucleophiles. They do not occur naturally but synthesized only through chemical synthesis1 and have been extensively used in different applications such as dying textile fibres, colouring variety of materials, medicinal studies and in advanced organic synthesis as well as shows excellent antibacterial and pesticidal properties2. Azo compounds and its derivatives are also known for their use as antifungal, anti-diabetics, antineoplastics, anti-inflammatory, antiseptic and other useful chemotherapeutic agents3,4. A number of azo compounds particularly synthesized from β-naphthol, m-cresol, resorcinol, tyrosine, aspirin, paracetamol etc have been frequently reported and exhibited impressive biocidal effects. Since compounds with an azo moiety and 4-hydroxybenzaldehyde moiety have been extensively used as dyes but their antimicrobial activity are less reported and hence in the present work, we have prepared five different substituted azo derivatives of 4-hydroxybenzaldehyde namely 1a-e, characterized and also screened for their antibacterial activity at different concentrations by using disc diffusion method.

Materials and Methods
In present work, chemicals and reagents used were of analytical grade (Merck and Alfa Aesar Company Ltd). Melting points were determined by open capillary method and are uncorrected. The UV spectra of azo compound was determined by Lab India spectrophotometer at Vidyabharati Mahavidyalaya, Amravati. IR spectra was recorded in KBr pellets from Shimadzu DR-8000 IR spectrophotometer at Shri Shivaji Science College, Amravati and 1H NMR spectra from Bruker Avance II 400 MHz NMR spectrometer using DMSO as a solvent and TMS as an internal standard at SAIF, Punjab University, Chandigarh.

Experimental procedure for the synthesis of azo compounds: 4-Nitroaniline (0.01 m) was dissolved in 2.5 ml of conc. HCl and 2.5 ml (4N) cold solution of NaNO2 was added with constant stirring. During addition, temperature of the reaction mixture was maintained up to 0-5°C. Diazonium salt solution prepared above was added drop by drop to the solution of 4-hydroxybenzaldehyde in 10% NaOH with stirring for 30 to 40 minutes by adjusting the temperature between 5-10°C. The crude product precipitate was filtered, washed with distilled water, dried and recrystallised from hot ethanol to yield brown coloured crystalline solid of 4-hydroxy-3-((4-nitrophenyl)diazenyl) benzaldehyde (1c). M.f. = C13H8N2O4; m.w. = 271.23; m.p. = 94-95°C. Its alcoholic solution shows positive test of ferric chloride, showing the presence of phenolic –OH group. Similarly other compounds are prepared by same method and are shown in Scheme-1.

Spectral data of representative azo compound 1c: IR: 3707 cm⁻¹ (Phenolic –OH stretch), 3032 cm⁻¹ (Aromatic C-H stretch), 1716 cm⁻¹ (C=O stretch of Ar-CHO), 1539 cm⁻¹ (Aromatic C=C stretch), 1492 cm⁻¹ (N=N stretch).1H NMR: δ 3.35 (s, 1H of -OH), δ 11.7 (s, 1H of -CHO), δ 6.9-8.4 (m, 7H of Ar-H). UV (λmax): 360 nm.

Antimicrobial screening: All the synthesized azo compounds were screened for their antibacterial activities against three microorganisms viz. Escherichia coli, Staphylococcus aureus and Salmonella typhi by adopting disc diffusion method8 at Microbial Section, FTL, Krishi Vigyan Kendra, Durgapur (Badnera), Dist. Amravati. The azo compounds were dissolved in ethanol to get solutions of 50 and 100 mcg/ml concentrations.
Sterile discs were dipped in these solutions, dried and placed on nutrient agar plates spread with the bacteria. After incubation at 37°C for 24 hr, the zones of inhibition produced by azo compounds were measured in mm and were compared with streptomycin as a standard.

Scheme-1

The general reaction scheme for synthesis of azo compounds 1a-e

Table-1

Compounds codes, names, mol. formulae, mol. weights, melting points and percentage yields of synthesized azo compounds 1a-e

<table>
<thead>
<tr>
<th>Compds. codes</th>
<th>Compounds names</th>
<th>Mol. formulae</th>
<th>Mol. Wt.</th>
<th>M.p. (°C)</th>
<th>% Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>(E)-4-hydroxy-3-((2-nitrophenyl)diazenyl) benzaldehyde</td>
<td>C_{13}H_{9}N_{3}O_{4}</td>
<td>271.23</td>
<td>120-122</td>
<td>50%</td>
</tr>
<tr>
<td>1b</td>
<td>(E)-4-hydroxy-3-((3-nitrophenyl)diazenyl) benzaldehyde</td>
<td>C_{13}H_{9}N_{3}O_{4}</td>
<td>271.23</td>
<td>123-124</td>
<td>62%</td>
</tr>
<tr>
<td>1c</td>
<td>(E)-4-hydroxy-3-((4-nitrophenyl)diazenyl) benzaldehyde</td>
<td>C_{13}H_{9}N_{3}O_{4}</td>
<td>271.23</td>
<td>94-95</td>
<td>71%</td>
</tr>
<tr>
<td>1d</td>
<td>(E)-4-hydroxy-3-(p-tolyldiazenyl) benzaldehyde</td>
<td>C_{14}H_{12}N_{2}O_{2}</td>
<td>240.26</td>
<td>98-100</td>
<td>56%</td>
</tr>
<tr>
<td>1e</td>
<td>(E)-4-hydroxy-3-(4-(4-anilinyl)phenyldiazenyl) benzaldehyde</td>
<td>C_{19}H_{15}N_{3}O_{2}</td>
<td>317.34</td>
<td>102-104</td>
<td>52%</td>
</tr>
</tbody>
</table>

Table-2

Antimicrobial activity of synthesized azo compounds 1a-e

<table>
<thead>
<tr>
<th>Compds. codes</th>
<th>Conc. (mcg/ml)</th>
<th>Zones of inhibition in mm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E.coli</td>
<td>S.aureus</td>
</tr>
<tr>
<td>1a</td>
<td>50</td>
<td>NI</td>
</tr>
<tr>
<td>1b</td>
<td>50</td>
<td>NI</td>
</tr>
<tr>
<td>1c</td>
<td>50</td>
<td>I(6)</td>
</tr>
<tr>
<td>1d</td>
<td>50</td>
<td>NI</td>
</tr>
<tr>
<td>1e</td>
<td>50</td>
<td>NI</td>
</tr>
<tr>
<td>Std.</td>
<td>25 mcg/disc</td>
<td>20</td>
</tr>
</tbody>
</table>

NI=No Inhibition, I=Inhibition (zones of inhibition are given in parenthesis)
Figure-1
UV spectra of azo compound 1c

Figure-2
IR spectra of azo compound 1c
Results and Discussion

In this work, total five substituted azo compounds namely 1a-e were successfully synthesized from five different aromatic amines by simple diazotization-coupling reactions, recrystallised and two different concentrations of each compounds were prepared and further used individually to test their antibacterial activities against three microorganisms viz. *Escherichia coli*, *Staphylococcus aureus* and *Salmonella typhi*. From the data on antimicrobial activities of azo compounds given in Table-2, it was observed that the azo compounds 1a, 1b, 1d and 1e do not showed any inhibitory action and were found to be inactive against all the tested microorganisms at both the concentrations. Only the compound 1c showed inhibitory action against *E. coli*, *S. aureus* and *S. typhi* at both concentrations. At 50 mcg/ml concentration, compound 1c showed 6, 13 and 7 mm of zones of inhibition and at 100 mcg/ml concentrations showed 8, 14 and 8 mm of zones of inhibition against *E. coli*, *S. aureus* and *S. typhi* respectively. The maximum 13 and 14 mm zones of inhibition of compound 1c was found to be against *S. aureus* species at 50 mcg/ml and 100 mcg/ml concentrations respectively. Also Streptomycin at the concentration of 25 mcg/disc showed 20, 26 and 25 mm zones of inhibition against the microorganisms *E. coli*, *S. aureus* and *S. typhi* respectively.

Conclusion

Out of the five laboratory synthesized substituted azo compounds, the compound 1c is found to be active and showed low to moderate antibacterial activity against all the microorganisms tested. The inhibitory effect of azo compounds 1c recorded especially against *S. aureus* was most satisfactory at both the concentrations and hence it can be used as lead compound against microorganisms *S.aureus*.

Acknowledgement

We are thankful to Principal, Vidyabharati Mahavidyalaya, Amravati for providing laboratory facilities and also thankful to Microbial Section, FTL, Krishi Vigyan Kendra, Durgapur (Badnera), Dist.Amravati for their support.

References


