International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Synthesis and Structural Properties of Nanocomposite of PANI/ZnO by in –Situ polymerization

Author Affiliations

  • 1Department of Physics, Vidya Bharati Mahavidyalaya, C.K. Naidu Road, CampAmravati-444602, India
  • 2Department of Physics, Vidya Bharati Mahavidyalaya, C.K. Naidu Road, CampAmravati-444602, India
  • 3Department of Physics, Vidya Bharati Mahavidyalaya, C.K. Naidu Road, CampAmravati-444602, India
  • 4Department of Physics, Vidya Bharati Mahavidyalaya, C.K. Naidu Road, CampAmravati-444602, India

Res.J.chem.sci., Volume 6, Issue (5), Pages 27-33, May,18 (2016)


Hybrid PANI/ZnO synthesized by typical oxidative polymerization. This nanocomposite of PANI/ ZnO has been investigated for their structural properties because of hybrid structures. This adopted synthesis method is calledin –situ polymerization. XRD patterns of pure zinc oxide, pure polyaniline and nanocomposites PANI/ZnO gives confirmation of elements were present in compound. SEM micrographs shownanocomposite material PANI/ZnO nanotube formation PANI and in situ deposition of ZnO. EDX gives confirmation of nanocomposites material PANI/ZnO. This nanotube structures enhances the active and passive properties.


  1. Eronides F., da Silva Jr., Elder A. de Vasconcelos and Eronides F. da (2011)., Tailoring the Electrical Properties of ZnO/Polyaniline Heterostructures for Device Applications., Journal of the Korean Physical Society, 58, 1256-1260.
  2. S. Virji, J .X. Huang, R.B. Kaner and B.H. Weiller (2004)., Polyaniline nanoiiber gas msors: Examination of response mechanisms., Nano Lett., 4, 491-496.
  3. D. Nicolas-Debarnot and F. Poncin-Epaillard (2003)., Polyaniline as a new sensitive layer for gas sensors., AnalyticaChimica Acta, 475, 1-15.
  4. D.S. Sutar, N. Padma, D.K. Aswal, S.K. Deshpande, S.K. Gupta and J.V. Yakhmi (2007)., Preparation of nanofibrous polyaniline Sims and their application as ammonia gas sensor., Sensors Actuators B, 128, 286- 292.
  5. P.N. Bartlett, K. Sim and L. Chung (1989)., Conducting polymer gas sensors part II: responseof polypyrrole to methanol vapour., Sensor and Actuators B, 19, 141–150.
  6. R. Nohria, R.K. Khillan, Y. Su, R. Dikshit, Y. Lvov and K. Varahramya (2006)., Humidity sensor based on ultrathin polyaniline film deposited using layer-by-layer nanoassembly., Sensor and Actuators B, 114, 218–222.
  7. M. Matsuguchi, A. Okamoto and Y. Sakai (2003)., Effect of humidity on NH3 gas sensitivity of polyaniline blend films., Sensor and Actuators B, 94, 46-52.
  8. NJ. Pinto, R. Gonzalez, J. Alan T. Johnson and A.G. Mac Diarmid (2006)., Electrospun hybrid organic/inorganic semiconductor Schottkynanodiode., Appl. Phys. Letter, 89, 033505.
  9. H.Q. Liu, C.H. Reccius and H.G. Craighead (2005)., Singie electrospun regioreguierpoly(3 hexylthiophene) nanofiber field-effect transistor., Appl. Phys. Letter 87, 253106.
  10. M.M. Alam, J. Wang, Y.Y. Guo, S.P. Lee and HB. Tseng (2005)., Electrolyte-gated transistors based on conducting polymer nanowire junction arrays., J. Phys. Chem. B 109, 12777-12784.
  11. A.K. Wanekaya, MA. Bangar, M. Yun, W. Chen, N.V. Myung and A. Mulchandani (2007)., Fieldeffect transistors based on single nanowires of conducting polymers., J. Phys. Chem111, 5218-5221.
  12. NJ. Pinto, R. Perez, C1-1. Mueller, N. Theofylaktos and F.A. Miranda (2006)., Dual input and gate fabricated from a single channel po1y(3-hexylthiophene) thin film field effect transistor., J. Appl. Phys., 99, 84504.
  13. RJ. Tsang, J .X. Huang, J. Ouyang, R B. Kanter and Y. Yang (2005)., Polyaniline nanofiber/ gold nanoparticle nonvolatile memory., Nano Letter 5, 1077-1080.
  14. R.J. Tseng, C.O. Baker, B. Shedd, IX. Huang, RB. Kaner and LY. Ouyng, Y. Yang. (2007)., Charge transfer effect in the polyaniline-gold nanoparticle memory system., Appl. Phys. Letter, 90, 053101.
  15. N.T. Kemp, D. McGrouther, J.W. Cochrane and R. Newbury (2007)., Bridging the gap: Polymer nanowire devices., Adv. Mater. 19, 2634-2638.
  16. X.F. Yu, Y.X. Li, N.F. Zhu, Q.B. Yang and K. Kalantar-zaideh (2007)., A polyaniline nanofiber electrode and its application in a self-powered photoelectrochromic cell., Nanotech.18, 015201.
  17. A.N. Aleshin (2007)., Quasi-one-dimensional transport in conducting polymer nanowires., Phys. Solid State 49, 2015-2033.
  18. Moseley P.T. and Tofield. B.C. (1987)., Eds in: Solid state gas sensor. Adam Hilger, Bristol and Philedelphia.
  19. P. Judeinstein and C. Sanchez (1996)., Hybrid organic-inorganic materials: a land for Multidisciplinarily., J. Mater. Chem. 6, 511-525.
  20. C. Conn, S. Sestak, A.T. Baker and J. Unsworth (1998)., A polyaniline-based selective hydrogen sensor., Electroanal., 10, 1137-1141.
  21. L.S. Schadler (2003)., Polymer-based and polymer-filled nanocomposites, in: P M Ajayan (Eds.), Nanocomposite Science and Technology., Wiley-VCH Verlag, .77-154.
  22. Y. Ke, J. Lü, X. Yi, J. Zhao and Z. Qi (2000)., The effects of promoter and curing process on exfoliation behavior of epoxy/clay nanocomposites., J. Appl. Polym. Sci. 78, 808- 815.
  23. S.D Charpe and F.C. Raghuwanshi (2015)., Synthesis, structural and gas sensing properties of pure Zinc Oxide nano thick film., Journal of Electron Devices 21, 1854-1861.
  24. Y. He (2005)., A novel emulsion route to sub-micrometer polyaniline/nano-ZnO composite fibers., applied Surface Science249, 1-6.
  25. L.P. Bauermann, A.d. Campo, J. Bill and F. Aldinger (2006)., Heterogeneous Nucleation of ZnO Using Gelatin as the organic matrix., Chem. Mater. 18, 2016-2020.
  26. E. Tang, G. Cheng, X, Maa, X. Pang and Q. Zhao (2006)., Surface modification of zinc oxidenanoparticle by PMAA and its dispersion in aqueous system., Applied Surface Science, 252, 5227– 5232.