International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Recent Advancement in the Graphene/Metal Oxide Based Photovoltaic Cell

Author Affiliations

  • 1Department of Physics, Sant Gadge Baba Amravati University, Amravati -444 602, India
  • 2Department of Physics, Indira Mahavidyalaya, Kalamb-445 401, India
  • 3Department of Physics, Sant Gadge Baba Amravati University, Amravati -444 602, India

Res.J.chem.sci., Volume 6, Issue (11), Pages 51-54, November,18 (2016)

Abstract

The photovoltaic (PV) is very rapidly developing branch of technology, as it is concerned with energy demand. As reported, outstanding properties of graphene with metal oxides in part of introduction we will make design to study the different properties of such an efficient materials for PV technology. By analysing data available in literature of materials science, we will plan to investigate PV properties of graphene/CuO and graphene/Cu2O composite.

References

  1. Bu Y., Chen Z., Li W. and Hou B. (2013)., Highly efficient photocatalytic performance of graphene–ZnO quasi-shell–core composite material., ACS Appl. Mater. Interfaces, 5, 12361-12368.
  2. Khurana G., Sahoo S., Barik S.K. and Katiyar R.S. (2013)., Improved photovoltaic performance of dye sensitized solar cell using ZnO–graphene nano-composites., Journal of Alloys and Compounds, 578, 257-260.
  3. Peining Z., Nair A.S., Shengjie P., Shengyuan Y. and Ramakrishna S. (2012)., Facile fabrication of TiO2–graphene composite with enhanced photovoltaic and photocatalytic properties by electrospinning., ACS Appl. Mater. Interfaces, 4, 581-585.
  4. Zhang H., Wang W., Liu H., Wang R., Chen Y. and Wang Z. (2014)., Effects of TiO 2 film thickness on photovoltaic properties of dye-sensitized solar cell and its enhanced performance by graphene combination., Materials Research Bulletin, 49, 126-131.
  5. Hu A., Wang Q., Chen L., Hu X., Zhang Y., Wu Y. and Chen Y. (2015)., In Situ Formation of ZnO in Graphene: A Facile Way To Produce a Smooth and Highly Conductive Electron Transport Layer for Polymer Solar Cells.., ACS Appl. Mater. Interfaces, 7, 16078-85.
  6. Wang R., Wu Q., Lu Y., Liu H., Xia Y., Liu J., Yang D., Huo Z. and Yao X. (2014)., Preparation of nitrogen-doped TiO2/graphene nanohybrids and application as counter electrode for dye-sensitized solar cells., ACS Appl. Mater. Interfaces, 6, 2118−2124.
  7. Yang H., Guai G.H., Guo C., Song Q., Jiang S.P., Wang Y., Zhang W. and Li C.M. (2011)., NiO/graphene composite for enhanced charge separation and collection in p-type dye sensitized solar cell., J. Phys. Chem., C, 115, 12209-12215.
  8. Park H., Chang S., Jean J., Cheng J.J., Araujo P.T., Wang M., Bawendi M.G., Dresselhaus M.S., Bulovic V., Kong J. and Gradecak S. (2012)., Graphene cathode-based ZnO nanowire hybrid solar cells., Nano Letters, 13, 233-239.
  9. Tang Y.B., Lee C.S., Xu J., Liu Z.T., Chen Z.H., He Z., Cao Y.L., Yuan G., Song H., Chen L., Luo L., Cheng H.M., Zhang W.J., Bello I. and Lee S.T. (2010)., Incorporation of graphenes in nanostructured TiO2 films via molecular grafting for dye-sensitized solar cell application., ACS Nano, 4, 3482–3488.
  10. Kim H.N., Yoo H. and Moon J.H. (2013)., Graphene-embedded 3D TiO 2 inverse opal electrodes for highly efficient dye-sensitized solar cells: morphological characteristics and photocurrent enhancement., Nanoscale, 5, 4200–4204.
  11. Chen L., Zhou Y., Tu W., Li Z., Bao C., Dai H., Yu T., Liu J. and Zou Z. (2013)., Enhanced photovoltaic performance of a dye-sensitized solar cell using graphene–TiO 2 photoanode prepared by a novel in situ simultaneous reduction-hydrolysis technique., Nanoscale, 5, 3481-3485.
  12. Beliatis M.J., Gandhi K.K., Rozanski L.J., Rhodes R., McCafferty L., Alenezi M.R., Alshammari A.S., Mills C.A, Jayawardena K.D.G.I., Henley S.J. and Silva S.R.P. (2014)., ybrid Graphene‐Metal Oxide Solution Processed Electron Transport Layers for Large Area High‐Performance Organic Photovoltaics., Adv. Mater., 26, 2078–2083.
  13. Akhtar M.S., Kwon S., Stadler F.J. and Yang O.B. (2013)., High efficiency solid state dye sensitized solar cells with graphene–polyethylene oxide composite electrolytes., Nanoscale, 5, 5403-5411.
  14. Chuang M., Chen F. and Hsu C. (2014)., Gold nanoparticle-decorated graphene oxides for plasmonic-enhanced polymer photovoltaic devices., Journal of Nanomaterials, 6, 1573-1579.
  15. Barpuzary D. and Qureshi M. (2013)., Enhanced photovoltaic performance of semiconductor-sensitized ZnO–CdS coupled with graphene oxide as a novel photoactive material., ACS Appl. Mater. Interfaces, 5, 11673−11682.
  16. Ramadoss A. and Kim S.J. (2013)., Facile preparation and electrochemical characterization of graphene/ZnO nanocomposite for supercapacitor applications., Materials Chemistry and Physics, 140, 405-411.
  17. Imamura G. and Saiki K. (2015)., Modification of Graphene/SiO2 Interface by UV-Irradiation: Effect on Electrical Characteristics., ACS Appl. Mater. Interfaces, 7, 2439-2443.
  18. Ryu M.S. and Jang J. (2011)., Effect of solution processed graphene oxide/nickel oxide bi-layer on cell performance of bulk-heterojunction organic photovoltaic., Solar Energy Materials & Solar Cells, 95, 2893-2896.
  19. Li Q., Zhang P.X.B., Tsai H., Wang J., Wang H.L. and Wu G. (2013)., One-step synthesis of Mn 3 O 4/reduced graphene oxide nanocomposites for oxygen reduction in nonaqueous Li–O 2 batteries., Chem. Commun., 49, 10838-10840.
  20. Zhu C., Guo S., Fang Y., Han L., Wang E. and Dong S. (2011)., One-step electrochemical approach to the synthesis of graphene/MnO2 nanowall hybrids., Nano Res., 4, 648–657.
  21. Zhou W., Liu J., Chen T., Tan K.S., Jia X., Luo Z., Cong C., Yang H., Li C.M. and Yu T. (2011)., Fabrication of Co 3 O 4-reduced graphene oxide scrolls for high-performance supercapacitor electrodes., Phys. Chem. Chem. Phys., 13, 14462–14465.
  22. Kwon C., Ham J., Kim S., Lee J.L. and Kim S.Y. (2014)., Eco-friendly graphene synthesis on Cu foil electroplated by reusing Cu etchants., Scientific Reports, 4, 4830.
  23. Wang T.W., Ball J.M., Barea E.M., Abate A., Webber J.A.A, Huang J., Saliba M., Sero I.M., Bisquert J., Snaith H.J. and Nicholas R.J. (2014)., Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells., Nano Lett., 14, 724-730.