Frequency and Temperature dependence studies in PTh-V$_2$O$_5$ composites

Jyoti Kattimani, T. Sankarappa* , R. Ramanna and J. S. Ashwajeet
Department of Physics, Gulbarga University, Gulbarga-585106, Karnataka, INDIA

Available online at: www.isca.in, www.isca.me
Received 5th June 2015, revised 10th June 2015, accepted 17th June 2015

Abstract
By oxidation method, Polythiophene (PTh) has been prepared. Composites were prepared by mixing Polythiophene and V$_2$O$_5$ in different weight percentages. Their phases were confirmed by XRD and SEM studies. Dielectric properties and AC conductivity were measured over broad range of frequency and temperature. Conductivity varied with temperature is the semiconductor fashion. Dielectric constant and loss both were found to decrease with increase in frequency and increased with increase in temperature. Conductivity variation with temperature has been analysed in terms of small polaron hopping theory of Mott.

Keywords: Polythiophene, nanocomposites, conductivity, polaron hopping, activation energy.

Introduction
The conducting polymers have been of great importance as this exhibit unique optical, electrical, chemical and thermal properties. Among these polymers, polythiophene (PTh) received, attention due to its high conductivity and thermal stability. The conductivity of these materials can be tuned by doping. Dopant anion plays an important role in polymerization. Polymer nanocomposites are considered to be hybrid. Nano composites of polymers are used in drug delivery, conductive paints, batteries etc. Vanadium oxides are polyfunctional materials and shows metal semiconductor transition. V$_2$O$_5$ is used as an active electrode in a rechargeable lithium battery, electro chromic devices, catalysts etc. The conductivity of PTh-ZnO composites were measured and found it to be order of 10^4 Ωm^{-1}. The room temperature conductivity of polypyrrole-TeO$_2$ and PTh-TeO$_2$ composites have been reported to be 1 x 10^3 Ωcm^{-1} and 2 x 10^2 Ωcm^{-1} respectively. In these composites, conductivity have been observed to have increased by 10 orders of magnitude compared to their pure PPy and PTh. PPy-V$_2$O$_5$ composites of different wt% in the range from 10 to 50 wt% were prepared by chemical oxidative method. The room temperature conductivity of these composites at 100 KHz revealed that the addition of vanadium oxide nanoparticle results in the decrease in conductivity up to 10% V$_2$O$_5$ and remain constant for higher amount of V$_2$O$_5$. The ac conductivity of pure PPy increased with frequency and PPy-V2O5 composite showed constant up to the frequency of 105 Hz and then increased steeply. Polyaniline-V$_2$O$_5$ composites showed constant conductivity up to 107 Hz. DC conductivity of polyaniline-V$_2$O$_5$ composites of different wt% of V$_2$O$_5$ was found to change from 10$^{-7}$ to 10$^{-9}$ Ωcm^{-1}, attaining a maximum value for 30 of V$_2$O$_5$. Here, we present the result of dielectric results for PTh-V$_2$O$_5$ nanocomposites. AC conductivity has been determined using dielectric data. Frequency and temperature dependence of both dielectric data and conductivity data has been thoroughly analyzed.

Material and Methods
PTh was prepared at 323K using AR grade Thiophene, Ferric chloride, Methanol and Chloroform. Homogenous aqueous solution of thiophene was prepared. Chloroform and ferric chloride solutions were mixed drop by drop to the PTh solution. The mixture magnetically stirred for 24 hours and filtered. The precipitate so formed was washed with chloroform and then with methanol. In this process, the precipitate changed its colour to brown indicating the formation of Polythiophene. The powder was dried up and subsequently ground. The PTh-V$_2$O$_5$ composites were prepared by mixing Polythiophene and analytical grade V$_2$O$_5$ in different wt% defined as (PTh) 100-x (V$_2$O$_5$)x, where x= 5%, 10% and 15% labelled as PTh-VO1, PTh-VO2 and PTh-VO3 respectively. Powders were subjected to XRD and SEM studies. From these studies, it is confirmed that the grains in these composites are of nano size. Powders of the composites were pressed into pellets. Capacitance, C, and dissipation factor, tanδ, were measured as function of frequency and temperature in the range from 50Hz to 3MHz and 300K to 423K respectively. These measurements were carried out in a precession impedance analyser (Wayne Kerr make Model No. 6500B). Temperature was sensed using Chromel-Alumel thermo- couple with the accuracy of ± 1K.

Results and Discussion
Dielectric properties: Using the measured capacitance and dissipation factor the dielectric parameters were determined for all the composites, using the expressions given in reference. Figure-1 shows the variation of dielectric constant, ε' with frequency for all the three composites. From this figure, we note that, ε' decreases gradually with frequency up to 70 KHz and become constant for higher frequencies. Dielectric loss factor, ε'' variation with frequency for all the three composites is...
plotted in figure-2. ε'' varied with frequency in the same fashion as that of ε'. Temperature variation of ε' for PTh-VO1 is shown in figure-3. In this figure, we see that ε' increases with temperature. Similar nature of variation of ε' with temperature has been observed for the remaining composites. The change in ε'' with temperature for PTh-VO1 is shown in figure-4. Similar behaviour of ε'' with temperature has been observed for the remaining composites.

\[\text{Conductivity, } \sigma = \varepsilon'' \times \varepsilon_0 \]

(1)

Where: ε_0 is free space permittivity which is equal to 8.85 x 10^{-12} Fm^{-1}. Conductivity variation with temperature for different frequencies for the composite PTh-VO2 is shown in figure-5.

It can be seen in figure-5 that conductivity increases with increasing temperature indicating semiconducting type of behaviour. It also increased with increasing frequency. Similar results have been reported for polyaniline doped with silver nanoparticles, polyaniline doped with cobalt and polyaniline doped with nickel oxide\(^{25-27}\). All the present composites behaved in the same way. Variation of conductivity of all the present composites was found to be within the same order of magnitude i.e, 10^{-4} (\Omega^{-1}m^{-1}).

Conductivity variation with V_2O_5 content for two different frequencies at temperature of 403K is shown in figure-6. From figure-6 it is clear that conductivity decreased with increasing V_2O_5 content.

The conductivity data as a function of temperature has been fit
to the Mott Small Polaron Hopping (SPH) theory. This theory gave the conductivity expression as:

$$\sigma = \sigma_0 \exp \left\{ - \frac{E_a}{K_B T} \right\}$$ \hspace{1cm} (2)

Where E_a the activation energy for small polaron hopping.

The plots of $\ln(\sigma T)$ versus $1/T$ were made as per equation-2 for the composite PTh-VO2 and shown in figure-7. The linear lines were fit to the data in the high temperature region where the data appeared linear. Activation energy, E_a for ac conductivity was calculated using the slopes of the fit linear lines.

Activation energy, E_a versus V$_2$O$_5$ content determined for the present composites for different frequencies are plotted in figure-8.

From the figure-8 one can note that E_a increases with increase of V$_2$O$_5$ content and decreased with increase of frequency. Increase in E_a with increase in V$_2$O$_5$ concentration may be that addition of V$_2$O$_5$ content to the PTh network contributes more to the scattering of polarons. Similar results have been reported for polyaniline doped with V$_2$O$_5$, polyanilinedoped with CeO$_2$ and polypyrrole doped with Ag17,29,30.

Conclusion

Polythophene has been synthesised at 323K by chemical method. PTh-V$_2$O$_5$ composites were prepared by mixing Polythiophene and V$_2$O$_5$ in different weight percentages. The changes in dielectric properties with temperature and frequency were measured over broad ranges. Dielectric constant decreased with increase in frequency and increased with temperature. Dielectric loss decreased with increase in frequency and
increase in frequency and increased with V
obtained. Activation energy was found to be decreas ed with
crease of both temperature and frequency. By empl oying
expression, activation energy for ac conductivity has been

References

1. Tiwari D.C, Vikas Sen and Rishi Sharma, Temperature
dependent studies of electrical and dielectric properties of
Polythiophene based nano composite, Indian Journal of
Pure and Applied Physics, 50, 49-56 (2012)
2. Rashmi Saxena, Vinodini Shaktawat, Kananbala Sharma,
Narendra S Saxena and Thaneshwar Sharma P.,
Measurement of Thermal Transport Properties in Metal
Doped Polypyrrole, Iranian Polymer Journal, 17(9), 659-
668 (2008)
3. Guanghao Lu, Haowei Tang, Yunpeng Qu, Ligui Li and
Xiaoniu Yang., Enhanced Electrical Conductivity of
Highly Crystalline Polythiophene/Insulating-Polymer
4. Mohd. Hanief Najar and Kowsar Majid, Synthesis,
Characterization, electrical and thermal properties of
nanocomposite of Polythiophene with nanophotoduct:
A potent composite for electronic use, J Mater Sci:
(2013)
J.B. and Oh Shom Joo, Post deposition heating effects on
the properties of Polythiophene thin films, Archives of
physics research, 1(4) 119-125 (2010)
6. Kamat S.V, Tamboli S.H, Vijaya puri, Yadav J.B. and
Oh Shom Joo, Optical and electrical properties of
Polythiophene thin films: Effect of post deposition
heating, Journal of optoelectronics and advanced
materials, 12(11), 2301-2305 (2010)
7. Tabassum Akhtar and Masood Alam, Synthesis,
Characterization and Electrical Conductivity of Zinc
Oxide Nanoparticles Embedded in Polythiophene
Nanocomposites, Science of Advanced Materials, 6, 1–8
(2014)
8. Anish Khan, Abdullah M. Asiri, Aftab Aslam Parwaz
Khan and Sher Bahadur Khan, Arabian, Electrical
conductivity and ion-exchange kinetic studies of
Polythiophene Sn(VI) phosphate nano composite cation-
Arabje, (2014)
9. Rita Sulub S, Martinez-Millan W and Mascha Smit A,
Study of the Catalytic Activity for Oxygen Reduction of
Polythiophene Modified with Cobalt or Nickel, Int. J.

10. Posudievskii O. Yu, Kurys Ya I., Biskulova S.A.,
Malinovskii Yu. K. and Pokhodenko V.D.,
Nanocomposites produced by direct intercalation of
secondary doped polyaniline in V2O5, Theoretical and
11. Bharati Nandapure, Subhash Kondawar, Mahesh
Salunkhe and Arti Nandapure, Nanostructure cobalt
oxide reinforced conductive and magnetic polyaniline
nanocomposites, Journal of Composite Materials, 47(5),
559-567 (2012)
12. Maryam Aghazadeh and Fatemeh Aghazadeh, Electrical
conductivity property study of polyaniline-cobalt
nanocomposite, Journal of Applied Chemical Research,
7(3), 47-55 (2013)
13. Nanadapure B.I., Kondawar S.B. and Nandapure A.I.,
Magnetic properties of nanostructured cobalt and nickel
oxide reinforced polyaniline composites, International
14. Shevchuk V.N, Usatenko Yu.N, Demchenko P.Yu,
Antonyak T.O. and Serkiz R.Ya., Nano and microsize
15. Shama Islam G.B., Lakshmi V.S, Azher M. Siddiqui,
Husain M and Zulfequar, Synthesis, electrical
conductivity and dielectric behaviour of polyaniline/V2O5
composites, International Journal of Polymer Science,
doi.org/10.1155, 307525 (2013)
16. Nurhiswati Abd. Rahman, Tunku Ishak Tunku Kudin,
Ab. Malik Marwan Ali and Muhd Zu Azhan Yahya,
Synthesis and characterization of composite polypyrrole-
vanadium oxide (PPy/V2O5), Journal of Materials
Science and Engineering B, 1, 457-460 (2011)
17. Parinitha M. and Venkateshlu A., Dielectric and AC
conductivity studies of vanadium pentaoxide doped
polyaniline composites, International Journal of
Engineering and Science, 2(2), 45-50 (2013)
18. Vijaykumar B, Chanshetty Sharanappa G, Patil B.M. and
Sangshetty K., Transport properties of polyaniline-V2O5
19. Shama Islam, Mohsin Ganaie, Shahib Ahmad, Azher M.
Siddiqui and Zulfequar M., Dopant effect and
characterization of poly (O-Toluidine)/ vanadium
 pentoxide composites prepared by in situ polymerization
 process, International Journal of Physics and Astronomy,
2, 105-122 (2014)
20. Kowsar Majid, Tabassum R, Shah A.F., Ahmad S. and
Singla M.L., Comparative study of synthesis,
characterization and electrical properties of polypyrrole
 and Polythiophene composites with tellurium oxide, J

