6th International Virtual Congress (IVC-2019) And Workshop.  International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Quantum-chemical Modeling of the Cyclic-Pentameric Mechanism for the 1H-3H Proton Transfer in Imidazole Derivatives

Author Affiliations

  • 1Department of Chemistry, Ivane Javachishvili Tbilisi State University, 0179, GEORGIA
  • 2Department of Chemistry, Sukhumi State University, 0186, GEORGIA

Res.J.chem.sci., Volume 5, Issue (4), Pages 89-91, April,18 (2015)

Abstract

About of the cyclic-pentameric model for the 1H-3H proton transfer in the imidazole derivatives is reported. The activation energy (ΔE) and reaction energy (ΔE) of the proton transfer as well as the bond orders (PNH) and (PN…H) by means of Density Function Theory (DFT) are calculated. It is shown that proton transfer is energetically more advantageous in nitroimidazole. The values , and ΔE#from the point of view of chemical transformations vary in rather reasonable limits, what indicates on the competence of the proposed cyclic - pentameric model. It is the new nonionic and oligomeric cyclic model, where 1H-3H proton transfer with one stage occurs.

References

  1. Zimmermann H., Proton Transfer, Acid-Base Catalysis, Z. Electrochim.,65, 821-840 (1961)
  2. Ten G., Burova T. and Baranov V., On the Mechanism of proton Transfer in Imidazole, J. Struct. Chem.,48, 623-633 (2007)
  3. Nesmeyanov A, Zavelovich E, Babin V., Kochetkova S. and Fedin E, H and 13C NMR Study of tautomerism in azoles, Tetrahedron,31, 1461-1464 (1975)
  4. Borisov Yu., Vorob’eva N., Abronin I. and Kolomiets A, On the mechanism of proton transfer imidazole, Izv. Akad. Nauk, Ser. Chim.,2779-2783 (1988)
  5. Fedorov L., Saverino A., Viskardi G., Rebrov A. andBarni E., 13C NMR Spectroscopy of Tautomeric Conversions in Imidazole Compounds, Izv. Akad. Nauk, Ser. Khim., 2, 299-308 (1992)
  6. Hickman B., Mascal M., Titman J. and Wood I., Protonic Conduction in Imidazole: A Solid - State 15 N NMR Study, J. Am. Chem. Soc.,121, 11486-11490 (1999)
  7. Peral F. and Gallego E., Self-association of imidazole and its methyl derivatives in aqueous solution A study by ultraviolet spectroscopy, J. Mol. Struct.,415, 187-196 (1997)
  8. Kikalishvili T. and Kereselidze J., Trimeric Mechanism of propton transfer in Imidazole, Chem. Heter. Comp.,38, 1069-1071 (2002)
  9. Alkorta I., Goya P., Elguero J. and Singh Sh.A, Simple Approach to the Tautomerism of Aromatic Heterocycles, Proceed. Natl. Acad. Sci. Lett.,30, 139-159 (2007)
  10. Iannuzzi M. and Parrinelo M., Proton Transfer in Heterocycle Cristals, Phys. Rev. Lett.,93, 025901-025904 (2004)
  11. Iannuzzi M., Proton Transfer inimidazole-based molecular Cristals, J. Chem. Phys.,124, 204710-204717 (2006)
  12. Nagata N., Kugimiya Sh. and Kobuke Y., Antenna functions of 5.15-bis (imidazol-4-yl)-10.20-bis (4-dodecyloxyphenyl)-porphyrin supramolecular assembly through imidazole-imidazole hydrogen bonding, Chem. Commun., 15, 1389-1390 (2000)
  13. Zundel G. and Muehlinghaus J, Simmetry of hydrogen Bonds, Infrared Continuous Absorbtion and proton transfer, Z. Naturforsch.Chem. Sc., 26b, 546 (1971)
  14. Kohn W., Becke A. and Parr R., Density Functional Theory of Electronic structure, J. Phys. Chem.,100, 12974 – 12980 (1996)
  15. Laikov D., Ustynyuk Yu. and Priroda 04, A quantumchemical program suite, New possibilities in the study of molecular systems with the application of parallel computing, Russ. Chem. Bull., Int. Edn.,54, 820–826 (2005)
  16. Perdew J., Burke K. and Ernzerhof M., Generalized Gradient Approximation Made simple, Phys. Rev. Lett., 77, 3865-3868 (1996)
  17. Adamo C. and Barone V., Physicaly motivated density functional with improved performances, J. Chem. Phys, 116, 5933-5940 (2002)
  18. Becke A, Density functional exchange: Energy approximation with correct asymptotic behavior, Phys. Rev. A, 38, 3098-3100 (1988)
  19. Lee C., Yang W. and Parr R., Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B,37, 785-789 (1988)
  20. Perdew J. and Wang Y., Accurate and simple analytic representation of the electron-gas correlation energy, Phys. Rev. B,45, 13244-13249 (1992)