6th International Virtual Congress (IVC-2019) And Workshop.  International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Use of Non-Conventional Reaction Media - A Green Approach

Author Affiliations

  • 1Motilal Nehru College, New-Delhi, INDIA

Res.J.chem.sci., Volume 5, Issue (3), Pages 77-89, March,18 (2015)

Abstract

Use of volatile organic solvents, particularly the chlorinated hydrocarbons, lead to serious environmental issues like air and water pollution. It has been realized that the replacement of these environmentally harmful solvents with benign non-conventional media will be a great step towards achieving sustainable processes. The most prevalent of these new solvent systems include, but not exclusively, water, supercritical fluids (like supercritical CO2), ionic liquids, solvent-less processes and fluorous solvents.

References

  1. Anastas P.T. and Williamson T.C., Green Chemistry: Frontiers in Benign Chemical Syntheses and Processes, Oxford University Press, (1998)
  2. Capello C., Fischer U. and Hungerbuhler K, What is a green solvent?, A comprehensive framework for the environmental assessment of solvents, Green Chem., 927-934, (2007)
  3. Gani R., Gonzalez C.J., Kate A., Crafts P.A., Jones M., Powell L., Atherton J.H. and Cordiner J.L., A Modern approach to solvent selection, Chem. Eng., 30-41 (2006)
  4. Savaiko B., A promising future for ethanol, World ethanol and biofuels report., 20-22 (2004)
  5. Noyori R., Supercritical Fluids : Introduction, Chem. Rev., 99, 353-354 (1999)
  6. Petkovic M., Seddon K.R., Rebelo L.P.N. and Pereira C.S., Ionic liquids: A pathway to environmental acceptability, Chem. Soc. Rev., 40, 1383-1403 (2011)
  7. Andrade C.K.Z. and Alves L.M., Environmentally benign solvents in organic synthesis: Current Topics, Curr. Org. Chem., 195-218 (2005)
  8. Pollet P., Davey E.A., Ureña-Benavides E.E., Eckerta C.A., Liotta C.L., Solvents for sustainable chemical processes, Green Chem., 16, 1034-1055 (2014)
  9. Metzer J.O., Solvent-Free Organic Syntheses, Angew. Chem. Int. Ed.,37, 2975-2978 (1998)
  10. Cave G.W.V., Raston C.L. and Scott J.L., Recent advances in solventless organic reactions: Towards benign synthesis with remarkable versatility, Chem. Commun., 2159-2169 (2001)
  11. Loupy A., Solvent-free reactions, Top. Curr. Chem.,206, 153-207 (1999)
  12. Gawande M.B., Bonifacio V.D.B., Luque R., Branco P.S. and Varma R.S., Solvent-free and catalyst free chemistry: A benign pathway to sustainability, Chem Sus Chem., 7, 24-44 (2014)
  13. Singh M.S. and Chowdhury S., Recent developments in solvent–free multicomponent reactions : A perfect synergy for eco-compatible organic synthesis, RSC Adv., 2, 4547-4592 (2012)
  14. He J.Y., Xin H.X., Yan H., Song X.Q. and Zhong R.G., Convenient ultrasound-mediated synthesis of 1, 4-diazabutadienes under solvent-free conditions, Ultrason. Sonochem.,18, 466-469 (2011)
  15. Varma R.S., Solvent-free organic syntheses using supported reagents and microwave irradiation, Green Chem., 43-55 (1999)
  16. Pelphrey P., Hansen J. and Davies H.M.L., Solvent-free catalytic enantioselective C–C bond forming reactions with very high catalyst turnover numbers, Chem. Sci., 254-257 (2010)
  17. Cruz P.de la., Hoz A.de la., Font L.M., Langa F. and Perez-Rodriguez M.C., Solvent-free phase transfer catalysis under microwaves in fullerene chemistry: A convenient preparation of N-alkylpyrrolidino [60] fullerenes, Tetrahedron Lett., 39, 6053-6056 (1998)
  18. Reddy B.M., Thirupathi B. and Patil M.K., One-pot synthesis of substituted coumarins catalyzed by silica gel supported sulfuric acid under solvent-free conditions, The Open Catal. J., 33-39 (2009)
  19. Jiang T., Ma X., Zhou Y., Liang S., Zhang J. and Han B., Solvent-free synthesis of substituted ureas from CO and amines with a functional ionic liquid as the catalyst, Green Chem., 10, 465-469 (2008)
  20. Hua L., Yao Z., Xu F. and Shen Q., Chemoselective reactions under solvent-free conditions: lanthanidecatalyzed syntheses of 2-amino-3,1-benzothiazines and 3,4-dihydroquinazoline-2-thiones, RSC Adv., 3113-3120 (2014)
  21. Poolandian B., Ghasemi E. and Jaberi Z.A., Catalyst free and solvent free synthesis of novel symmetrical bisthioglycolic acid derivatives, Green Chem. Lett. Rev., 7, 60-63 (2014)
  22. Kumar S., An Improved one pot and eco friendly synthesis of aurones under solvent free conditions, Green Chem. Lett. Rev., 7, 95-99 (2014)
  23. Oakes R.S., Clifford A.A. and Rayner C.M., The use of supercritical fluids in synthetic organic chemistry, J. Chem. Soc.,Perkin Trans., 917-941 (2001)
  24. Brunner G., Applications of supercritical fluids, Annu. Rev. Chem. Biomol. Eng., 1, 321-342 (2010)
  25. Skouta R., Selective chemical reactions in supercritical carbon dioxide, water and ionic liquids, Green Chem. Lett. Rev., 2, 121-156 (2009)
  26. Munshi P. and Bhaduri S., Supercritical Carbon-dioxide: A twenty first century solvent for the chemical industry, Curr. Sci., 97, 63-72 (2009)
  27. Sokolov V.I., Bulygina L.A., Khrustalev V.N., Starikova Z.A., Nikitin L.N. and Khokhlov A.R. Supercritical carbon dioxide as a solvent for crystallization and a reaction medium for metallocene derivatives, Dokl. Chem., 431, 65-70 (2010)
  28. Mayadevi S., Reactions in supercritical carbon dioxide, Ind. J. Chem., 51A, 1298-1305 (2012)
  29. Jiang H., Jia L. and Li J., Wacker reaction in supercritical carbon-dioxide, Green Chem., 161-164 (2000)
  30. Lee C.K.Y., Holmes A.B., Al-Duri B., Leeke G.A., Santos R.C.D. and Seville J.P.K., Nitrile oxide cycloadditions in supercritical carbon dioxide, Chem. Commun., 2622-2623 (2004)
  31. Kimmerle B.M., Grunwalst J.D. and Baiker A., Gold catalysed selective oxidation of alcohols in supercritical carbon dioxide, Top. Catal., 44, 285-292 (2007)
  32. Licence P., Ke J., Sokolova M., Ross S.K. and Poliakoff M., Chemical reactions in supercritical carbon dioxide: From laboratory to commercial plant, Green Chem., 5,99–104 (2003)
  33. Danciu T., Beckman E.J., Hancu D., Cochran R., Grey R., Hajnik D. and Jewson J., Direct Synthesis of Propylene Oxide with CO as the Solvent, Angew. Chem., Int. Ed., 42, 1140-1142 (2003)
  34. Selva M., Perosa A., Fabris M. and Canton P., The metathesis of -olefins over supported Re-catalysts in supercritical CO, Green Chem., 11, 229-238 (2009)
  35. Serani A.L., Aymonier C. and Cansell F., Supercritical water for environmental technologies, J. Chem. Technol. Biotechnol., 85, 583-589 (2010)
  36. Savage P.E., Organic chemical reactions in supercritical water, Chem. Rev., 99, 603-621 (1999)
  37. Hayashi H. and Hakuta Y., Hydrothermal Synthesis of Metal Oxide Nanoparticles in Supercritical Water, Mater., 3794-3817 (2010)
  38. Korzenski M.B. and Kolis J.W., Diels-Alder reactions using supercritical water as an aqueous solvent medium, Tetrahedron Lett., 38, 5611-5614 (1997)
  39. Dreher M., Johnson B., Peterson A.P., Nachtegaal M., Wambach J. and Vogel F., Catalysis in supercritical water: Pathway of the methanation reaction and sulfur poisoning over a Ru/C catalyst during the reforming of biomolecules, J. Catal., 301, 38-45 (2013)
  40. Horvath I.T. and Rabai J., Facile catalyst separation without water: Fluorous biphase hydroformylation of olefins, Science,266, 72-75 (199441.Dobbsa A.P. and Kimberley M.R., Fluorous phase chemistry: A new industrial technology, J. Fluorine Chem., 118, 3-17 (2002)
  41. Dobbsa A.P. and Kimberley M.R., Fluorous phase chemistry: A new industrial technology, J. Fluorine Chem., 118, 3-17 (2002)
  42. Curran D.P., Fluorous methods for synthesis and separation of organic molecules, Pure Appl. Chem., 72, 1649-1653 (2000)
  43. Klement I., Lutjens H. and Knochel P., Transition metal catalyzed oxidations in perfluorinated solvents, Angew. Chem., Int. Ed., 36, 1454-1456 (1997)
  44. Maayan G., Fish R.H. and Neumann R., Polyfluorinated quaternary ammonium salts of polyoxometalate anions: Fluorous biphasic oxidation catalysis with and without fluorous solvent, Org. Lett., 5, 3547-3550 (2003)
  45. Juliette J.J.J., Horvath I.T. and Gladysz J.A., Transition metal catalysis in fluorous media: Practical application of a new immobilization principle to Rhodium-catalyzed hydroboration, Angew. Chem., Int. Ed., 36, 1610-1612 (1997)
  46. Juliette J.J.J., Rutherford D, Horvath I.T. and Gladysz J.A., Transition metal catalysis in fluorous media:Practical application of a new immobilization principle to Rhodium-catalyzed hydroborations of alkenes and alkyne, J. Am. Chem. Soc., 121, 2696-2704 (1999)
  47. Hong M., Cai C. and Yi W.B., Hafnium (IV) bis (perfluorooctanesulfonyl) imide complex catalyzed synthesis of polyhydroquinoline derivatives via unsymmetrical Hantzsch reaction in fluorous media, J. Fluorine Chem., 131, 111-114 (2010)
  48. Yu H., Wan L., Cai C., A Novel system for the Suzuki cross-coupling reaction catalyzed with light fluorous palladium-NHC complex, J. Fluorine Chem., 144, 143-146 (2012)
  49. Fukuyama T., Arai M., Matsubara H. and Ryu I., Mizoroki-Heck Arylation of -Unsaturated Acids with a Hybrid Fluorous Ether, F-626: Facile filtrative separation of products and efficient recycling of a reaction medium containing a catalyst, J. Org. Chem., 69,8105-8107 (2004)
  50. Wei W., Keh C.C.K., Li C.J. and Varma R.S., Water as a reaction medium for clean chemical processes, Clean Techn. Environ. Policy, 6, 250-257 (2004)
  51. Moulay S., Towards water-borne organic synthesis: An education in chemistry research. Chemistry, 18, 1-21 (2009)
  52. Dallinger D. and Kappe C.O., Microwave-assisted synthesis in water as solvent, Chem. Rev., 107, 2563-2591 (2007)
  53. Lubineau A. and Auge J., Water as a solvent in organic synthesis, Top. Curr. Chem., 206, 1-39 (1999)
  54. Li C.J., Organic reactions in aqueous media with a focus on carbon-carbon coupling reactions, Chem. Rev., 93, 2023-2035 (1993)
  55. Narayan S., Muldoon J., Finn M.G., Fokin V.V., Kolb H.C. and Sharpless K.B., On Water: Unique reactivity of organic compounds in aqueous suspension, Angew. Chem., Int. Ed., 44, 3275-3279 (2005)
  56. Marziale A.N., Faul S.H., Reiner T., Schneider S. and Eppinger J., Facile palladium catalyzed Suzuki–Miyaura coupling in air and water at ambient temperature, Green Chem., 12, 35- 38 (2010)
  57. Buxaderas E., Alonso D.A. and Nájera C., Copper-free oxime–palladacycles catalyzed Sonogashira alkynylation of deactivated aryl bromides and chlorides in water under microwave irradiation, Eur. J. Org. Chem., 2013, 5864-5870 (2013)
  58. Kamble S., Rashinkar G., Kumbhar A. and Salunkhe R., Hydrotrope induced synthesis of 1,8 -dioxo-octahydroxanthenes in aqueous media, Green Chem. Lett. Rev., 5, 101-107 (2012)
  59. Rogers R.D. and Seddon K.R., Ionic Liquids as Green Solvents : Progress and Prospects, Am. Chem. Soc., 856,ACS Symposium series (2003)
  60. Wassercheid P. and WeltonT., Ionic Liquids in Synthesis, 2nd ed, Wiley-VCH (2008)
  61. Bourbigou H.O., Magna L. and Morvan D., Ionic liquids and catalysis: Recent progress from knowledge to applications, Appl. Catal. A: Gen., 373, 1-56 (2010)
  62. Ranke J., Stolte S., Stormann R., Arning J. and Jastorff B., Design of sustainable chemical products-The example of ionic liquids, Chem. Rev., 107, 2183-2206 (2007)
  63. Welton T., Room-Temperature Ionic Liquids. Solvents for synthesis and catalysis, Chem. Rev., 99, 2071-2083 1999) 64.Freemantle M.,Ionic liquids may boost clean technology development, Chem. Eng. News, 76, 32-37 (1998)
  64. Freemantle M., Ionic liquids may boost clean technology development, Chem. Eng. News, 76, 32-37 (1998)
  65. Seddon K.R., Stark A. and Torres M.J., Influence of chloride, water, and organic solvents on the physical properties of ionic liquids, Pure Appl. Chem., 72, 2275-2287 (2000)
  66. Gordon C.M., Holbrey J.D., Kennedy A.R. and Seddon K.R., Ionic liquid crystals: hexafluorophosphate salts, J. Mater. Chem., 8, 2627-2636 (1998)
  67. Reichert W.M., The Effects of Cation-Anion Interactions On the Physical and Solvent Properties of Ionic Liquids, Ph.D dissertation, The University of Albama: USA, (2006)
  68. Shimoyama Y. and Ito A., Predictions of cation and anion effects on solubilities, selectivities and permeabilities for CO in ionic liquid using COSMO based activity coefficient model, Fluid Phase equilib., 297, 178-182 (2010)
  69. Seki S., Kobayashi T., Kobatashi Y., Takei K., Miyashiro H., Hayamizu K., Tsuzuki S., Mitsugi T. and Umebayashi Y., Effects of cation and anion on physical properties of room-temperature ionic liquids, J. Mol. Liq., 152, 9-13 (2010)
  70. Zhang S., Sun N., He X., Lu X. and Zhang X., Physical Properties of Ionic Liquids: Database and Evaluation, J. Phys. Chem. Ref. Data,35, 1475-1517 (2006)
  71. Ganeshpure P.A., Ionic Liquids: Environment-friendly solvents and catalysts for the future, Asian J. Exp. Sci., 22, 113-115 (2008)
  72. Dyson P.J. and Geldbach T.J., Applications of Ionic Liquids in Synthesis and Catalysis, The Electrochem. Soc. Interface, 50-53 (2007)
  73. Bourbigou H.O. and Magna L., Ionic liquids: Perspectives for organic and catalytic reactions, J. Mol. Catal A: Chem., 182-183, 419-437 (2002)
  74. Plechkova N.V. and Seddon K.R., Applications of ionic liquids in the chemical industry, Chem. Soc. Rev., 37,123-150 (2008)
  75. Weyershausen B. and Lehmann K., Industrial application of ionic liquids as performance additives, Green Chem., 7, 15-19 (2005)
  76. Laus G., Bentivoglio G., Schottenberger H., Kahlenberg V., Kopacka H., Roder T.and Sixta H., Ionic Liquids: Current developments, potential and drawbacks for industrial applications, Lenzinger Berichte, 84, 71-85 (2005)
  77. Weyershausen B., Hell K. and Hesse U., Industrial application of ionic liquids as process aid, Green Chem., 7, 283-287 (2005)
  78. Singh R., Sharma M., Mamgain R. and Rawat D.S., Ionic Liquids: A versatile medium for palladium-catalyzed reactions, J. Braz. Chem. Soc., 19, 357-359 (2008)
  79. Vallette H., Pican S., Boudou C., Levillain J., Plaquevent J.C. and Gaumont A.C., Ionic Liquids: Valuable solvents for palladium catalyzed C-P cross coupling reactions, Ind. J. Chem., 45B., 2286-2290 (2006)
  80. Shi F., Gu Y., Zhang Q. and Deng Y., Development of ionic liquids as green reaction media and catalysts, Catal. Surv. Asia, 8, 179-186 (2004)
  81. Isambert N., Duque M.del.M.S., Plaquevent J.C., Genisson Y., Rodriguez J. and Constantieux T. Multicomponent reactions and ionic liquids: a perfect synergy for eco-compatible heterocyclic synthesis, Chem. Soc. Rev., 40, 1347-1357 (2011)
  82. Gok Y., Alici B., Centinkaya E., Ozdemir I. and Ozeroglu O., Ionic liquids as solvent for efficientesterication of carboxylic acids with alkyl halides, Turk. J. Chem., 34, 187-191 (2010)
  83. Song C.E., Enantioselective chemo- and bio-catalysis in ionic liquids, Chem. Commun., 1033-1043 (2004)
  84. Martinez J.A.B., Tang L., Belleres J.P., Zeller R., Angell C. and Friesen C., Hydrogen redox in protic ionic liquids and a direct measurement of proton thermodynamics, J. Phys. Chem. C., 113, 12586-12593 (2009)
  85. Xiao Y. and Malhotra S.V., Diels–Alder reactions in pyridinium based ionic liquids, Tetrahedron Lett., 45,8339-8342 (2004)
  86. Handy S.T., Grignard Reactions in imidazolium ionic liquids, J. Org. Chem., 71, 4659-4662 (2006)
  87. Anjaiah S., Chandrasekhar S. and Gree R., Carbon-Ferrier rearrangements in ionic liquids using Yb(OTf) as catalyst, J. Mol. Catal. A: Chem., 214, 133-136 (2004)
  88. Mastrorili P., Nobile C.F., Paolillo R. and Suranna G.P., Catalytic Pauson–Khand reaction in ionic liquids, J. Mol. Catal. A: Chem., 214, 103-106 (2004)
  89. Lombardo M., Chiarucci M. and Trombini C., A recyclable triethylammonium ion-tagged diphenylphosphine palladium complex for the Suzuki–Miyaura reaction in ionic liquids, Green Chem., 11, 574-579 (2009)
  90. Shen Z.L., Zhou W.J., Liu Y.T., Ji S.J. and Loh T.P., One-pot chemoenzymatic syntheses of enantiomerically-enriched -acetyl cyanohydrins from aldehydes in ionic liquid, Green Chem., 10, 283- 286 (2008)
  91. Feng L.C., Sun Y.W., Tang W.J., Xiu L.J., Lam K.L.,Zhou Z. and Chan A.S.C., Highly efficient chemoselective construction of 2,2-dimethyl-6-substituted 4-piperidones via multicomponent tandem Mannich reaction in ionic liquids, Green Chem., 12, 949-952 (2010)
  92. Singh D., Narayanaperumal S., Gul K., Godoi M., Rodrigues O.E.D. and Braga A.L., Efficient synthesis of selenoesters from acyl chlorides mediated by CuO nanopowder in ionic liquid, Green Chem., 12, 957-960 (2010)
  93. Fukuyama T., Inouye T. and Ryu I., Atom transfer carbonylation using ionic liquids as reaction media, J. Organomet. Chem., 692, 685-690 (2007)
  94. Chang S.U., Cho J.H. and Lee J.C., Efficient Oxidation of Benzylic Alcohols to Aldehydes and Ketones in Ionic Liquid Using N-Chlorosuccinimide/AlCl·6HO, Bull. Korean Chem. Soc., 29, 27-28 (2008)
  95. Klingshirn M.A., Broker G.A., Holbrey J.D., Shaughnessy K.H. and Rogers, R.D., Polar, non-coordinating ionic liquids as solvents for the alternating copolymerization of styrene and CO catalyzed by cationic palladium catalysts, Chem. Commun., 1394-1395 (2002)
  96. Singh V., Ratti R. and Kaur S., Synthesis and characterization of recyclable and recoverable MMT-clay exchanged ammonium tagged carbapalladacycle catalyst for Mizoroki–Heck and Sonogashira reactions in ionic liquid media, J. Mol. Catal. A: Chem.,334, 13-19 (2011)
  97. Phan N.T.S., Le K.K.A., Nguyen T.V. and Le N.T.H., Chitosan as a renewable heterogeneous catalyst for the Knoevenagel reaction in ionic liquid as Green Solvent. ISRN Org. Chem., Article ID 928484, 9, (2012)
  98. Schenzel A., Hufendiek. A, Kowollik C.B. and Meier M.A.R., Catalytic transesterification of cellulose in ionic liquids: Sustainable access to cellulose esters, Green Chem., 16, 3266-3271 (2014)
  99. Sekhon B.S., Ionic Liquids: Pharmaceutical and biotechnological applications, Asian J. Pharma. Biol. Res., 395-411 (2011)
  100. Swapnil D.A., Ionic Liquids: The green solvents for petroleum and hydrocarbon industries, Res. J. Chem. Sci., 2, 80-85 (2012)
  101. Siodmiak T., Marszall M.P. and Proszowska A., Ionic Liquids: A new strategy in pharmaceutical synthesis, Mini Rev. Org. Chem., 9, 1-6 (2012)
  102. http://www.basf.com/group/corporate/en/innovations/innovationaward/2004/basil., (2004)
  103. Rogers R.D. and Seddon K.R., Ionic Liquids: Solvents of the future?, Science, 302, 792-793 (2003)
  104. Hoff A., Jost C., Schwab A.P., Schmidt F.G., Weyershausen, B. Ionic Liquids: New designer compounds for more efficient chemistry, Elements: Degussa Sci. New. lett., 9, 10-15 (2004)