International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Solvent free green Synthesis of 5-arylidine Barbituric acid Derivatives Catalyzed by Copper oxide Nanoparticles

Author Affiliations

  • 1Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad-431004, MS, INDIA

Res.J.chem.sci., Volume 4, Issue (7), Pages 93-98, July,18 (2014)


Copper oxide nanoparticles as an efficient catalyst was used for the synthesis of 5-arylidine barbituric acid derivatives by condensation reaction of barbituric acid and various aromatic aldehydes at room temperature with high speed stirring. The present protocol especially favoured because it offers advantages of high yields, short reaction times, simplicity and easy workup. Moreover the catalyst is inexpensive, stable, can be recycled and reused for three cycles without loss of its activity.


  1. Tietze L.F. and Beifuss U., Comprehesive organic synthesis, by Trost B. M., Flaming I. and Heathcock C. H.,Pergoman Press Oxford,, 341-394 (1919)
  2. Borjarski J.T., Mokros J.L., Barton H.J. and Paluchowska M. H., Recent progress in barbituric acid chemistry, Adv. Heterocyc. Chem,38, 229-297 (1985)
  3. Cheng X., Tanaka K. and Yoneda F., Simple New Method for the Synthesis of 5-Deaza-10-oxaflavin, a Potential Organic Oxidant, Chem. Pharm. Bull., 38, 307-311 (1990)
  4. Gulliya K. S., Uses for barbituric acid analogs,US Patent, 5869494A, (1999)
  5. Gulliya K. S., Anti-cancer uses for barbituric acid analogsUS Patent, 5674870, (1997)
  6. Naguib F.N.M., Levesque D.L., Wang E.C., Panzica R.P. and Kouni El. M.H., 5-Benzylbarbituric acid derivatives, potent and specific inhibitors of uridine phosphorylase, Biochem. Pharmacol, 46, 1273-1283 (1993)
  7. Grams F., Brandstetter H. and D’Alo S., Pyrimidine-2,4,6-Triones: A New Effective and Selective Class of Matrix Metalloproteinase Inhibitors, Biol. Chem., 382,1277-1285 2001)
  8. Sakai K. and Satoh Y., Barbituric acid derivative and preventive and therapeutic agent for bone and cartilage containing the same, International Patent, W09950252A3, (2000)
  9. Tanaka K., Chen X., Kimura T. and Yoneda F., Oxidation of thiol by 5-arylidene 1,3-dimethylbarbituric acid and its application to synthesis of unsymmetrical disulfideTetrahedron Lett., 28, 4173-4176 (1987)
  10. Tanaka K., Chen X., Kimura T. and Yoneda F., Mild oxidation of allylic and benzylic alcohols with 5-arylidene barbituric acid derivatives as a model of redox coenzymes, Chem. Pharm. Bull., 34, 3945-3948 (1986)
  11. Li J. T., Dai H. G., Liu D. and Li T. S., Efficient method for synthesis of the derivatives of 5 arylidene barbituric acid catalyzed by aminosulfonic acid with grinding, Synth. Commun., 36, 789-794 (2006)
  12. Alarreca G., Sanabria R., Miranda R., Arroyo G., Tamariz J. and Delgado F, Preparation of Benzylidene Barbituric Acids Promoted by Infrared Irradiation in Absence of Solvent Synth. Commun., 30, 1295-1301 (2000)
  13. Dewan S. and Singh R., One Pot Synthesis of Barbiturates on Reaction of Barbituric Acid with Aldehydes under Microwave Irradiation Using a Variety of Catalysts, Synth. Commun., 33, 3081-3084 (2003)
  14. Wang C., Ma J., Zhou X., Zang X., Wang Z. Gao Y. and Cui P., 1ButylMethylimmidazolium Tetrafluoroborate –Promoted Green Synthesis of 5Arylidene Barbituric Acids and Thiobarbituric Acid Derivatives, Synth. Commun., 35, 2759-2764 (2005)
  15. Rao P.S. and Venkataratnam R.V., Zinc chloride as a new catalyst for knoevenagel condensation, Tetrahedron Lett., 32, 5821-5822 (1991)
  16. Prajapati D. and Sandhu J.S.,Cadmium iodide as a new catalyst for knoevenagel condensations, J. Chem. Soc. Perkin Trans., 739-740 (1993)
  17. Pullabhotla Rajasekhar V. S. R., Rahman A. and Jonnalagadda S. B., Selective catalytic Knoevenagel condensation by Ni–SiO supported heterogeneous catalysts: An environmentally benign approach, Catal. Commun., 10, 365-369 (2009)
  18. Dai G., Shi D., Zhou L. and Huaxue Y., Knoevenagel condensation catalyzed by potassium fluoride/alumina Chin. J. Appl. Chem.,12, 104-108 (1995)
  19. Sebti S., Smahi A. and Solhy A., Natural phosphate doped with potassium fluoride and modified with sodium nitrate: efficient catalysts for the Knoevenagel condensation, Tetrahedron Lett., 43, 1813-1816 (2002)
  20. Bennazha J., Zahouily M., Sebti S., Boukhari A. and Holt E. M., NaCaP, a new catalyst for Knoevenagel reaction, Catal. Commun., 101-104 (2001)
  21. Maadi El. A., Matthiesen C.L., Ershadi P., Baker J., Herron D.M., Holt E.M., J. Chem. Cryst., 33, 757 (2003)
  22. Deb M. L. and Bhuyan P. J., Uncatalysed Knoevenagelcondensation in aqueous medium at room temperature, Tetrahedron Lett., 46, 6453-6456 (2005)
  23. Khurana J. M. and Vij K., Nickel Nanoparticles Catalyzed Knoevenagel Condensation of Aromatic Aldehydes with Barbituric Acids and 2-Thiobarbituric Acids, Catal. Lett., 138, 104-110 (2010)
  24. Kaur J. R. and Kaur G., CoFe nanoparticles: An efficient heterogeneous magnetically separable catalyst for “click” synthesis of arylidene barbituric acid derivatives at room temperature, Chinese Journal of Catalysis, 34, 1697-1704 (2013)
  25. Reetz M. T., Helbig W., Quaiser S. A., Electrochemical Preparation of Nanostructural Bimetallic Clusters, Chem. Mater., 2227-2228 (1995)