International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Quantum Chemical Descriptors Based QSTR Study of Nitrobenzene Derivatives against Tetrahymena Pyriformis

Author Affiliations

  • 1 Department of Chemistry, M.L.K. PG College, Balrampur, UP, INDIA
  • 2 Department of Chemistry, Kisan PG College, Bahraich, UP, INDIA

Res.J.chem.sci., Volume 4, Issue (2), Pages 29-37, February,18 (2014)


Eight quantum chemical descriptors namely molecular weight, molar refractivity, HOMO energy, electronegativity, electron affinity, ionization potential, total energy and Log P of fifty four nitrobenzene derivatives have been calculated with the help of CAChe Pro of Fujitsu software using DFT methods and the semiemperical PM3 methods. Observed toxicities of all compounds are in terms of -log (IGC50), mM, which is the inverse logarithm of the concentration causing 50% growth inhibition of Tetrahymena pyriformis after 40 hours. These eight descriptors have been used in the development of QSTR models. The QSTR model developed from descriptors molecular weight, molar refractivity, electron affinity and total energy have very high predictive power and can be used to find out the toxicity of any new derivative of nitrobenzene. Reliable QSTR models have been obtained from single descriptors namely electron affinity and total energy. The quality of regression has been adjudged by correlation coefficient, cross validation coefficient and statistical parameters like standard error, standard error of estimate, p-value, t-value, degrees of freedom etc.


  1. Cronin M.T.D. and Schultz T.W., Development of Quantitative Structure-Activity Relationships for the Toxicity of Aromatic Compounds to Tetrahymena pyriformis: Comparative Assessment of the Methodologies, Chem. Res. Toxicol., 14, 1284-1295, (2001)
  2. Katritzky A.R., Oliferenko P., Oliferenko A., Lomaka A. and Karelson M., Nitrobenzene toxicity: QSAR correlations and mechanistic interpretations, J. Phys. Org. Chem., 16, 811-817, (2003)
  3. Kuzmin V.E., Muratov E.N., Artemenko A.G., Gorb L.G., Qasim, M. and Leszczynski J., The effects of characteristics of substituents on toxicity of the nitroaromatics: HiT QSAR study, J. Comp. Aid. Mol. Des., 22, 747-759, (2008)
  4. Agrawal W.K. and Khadikar P.V., QSAR prediction of toxicity of nitrobenzenes, Bioorg. Med. Chem., 3035-3040, (2001)
  5. Cronin M.T.D., Gregory B.W. and Schultz T.W., Quantitative Structure-Activity Analyses of Nitrobenzene Toxicity to Tetrahymena pyriformis, Chem. Res.Toxicol.,11, 902-908, (1998)
  6. Patai, S., The Chemistry of Amino, Nitroso, and Nitro Compounds and Their Derivatives. New York, USA: John Wiley & Sons Inc., (1982)
  7. Feuer H. and Nielsen A.T., Nitro Compounds: Recent Advances in Synthesis and Chemistry, VCH Publishing, New York, (1990)
  8. Neilson A.H. and Allard A.S., Environmental Degradation and Transformation of Organic Chemicals. Boca Raton, Florida: CRC Press, (2008)
  9. Talmage S.S., Opresko D.M., Maxwell C.J., Welsh C.J., Cretella F.M., Reno, P.H. and Daniel F.B., Nitroaromatic munition compounds: environmental effects and screening values, Rev. Environ. Contam. Toxicol., 161, 1-156, (1999)
  10. Rickert D.E., Toxicity of Nitroaromatic Compounds. Bristol, Pennsylvania, Hemisphere Publishing Corp, (1984)
  11. Robidoux P.Y., Svendsen C., Caumartin J., Hawari J., Ampleman G., Thiboutot S., Weeks J.M. and Sunahara G.I., Chronic toxicity of energetic compounds in soil using the earthworm (Eisenia andrei) reproduction test, Environ. Toxicol. Chem.19, 1764-1773, (2000)
  12. Donlon B.A., Razo-Flores E., Field J.A. and Lettinga G., Toxicity of N-substituted aromatics to acetoclastic methanogenic activity in granular sludge, Appl. Environ. Microbiol.,61, 3889-3893, (1995)
  13. Hall L.H. and Vaughn T.A., QSAR of Phenol Toxicity using Electrotopological State and Kappa Shape Indices, Med. Chem. Res.,, 407-416, (1997)
  14. Pasha F.A., Srivastava H.K. and Singh P.P., QSAR Study of Estrogens with the help of PM3 Based Descriptors, Int. J. Quantum Chem., 104 (1), 87-100, (2005)
  15. Pasha F.A., Srivastava H.K. and Singh P.P., Comparative QSAR Study of Phenol Derivatives with the help of Density Functional Theory, Bioorg. Med. Chem., 13(24), 6823-6829, (2005)
  16. Singh Rajeev, Kumar D., Singh Bhoop, Singh V.K. and Sharma Ranjana, Molecular structure, vibrational spectroscopic and HOMO, LUMO studies of S-2-picolyl- N-(2- acetylpyrrole) dithiocarbazate Schiff base by Quantum Chemical investigations, Research Journal of Chemical Sciences, 3(2), 79-84, (2013)
  17. Gupta Y.K., Agarwal S.C., Madnawat S.P. and Ram Narain, Synthesis, Characterization and Antimicrobial Studies of Some Transition Metal Complexes of Schiff Bases, Research Journal of Chemical Sciences, 2(4), 68-71, (2012)
  18. Buttrus H. Nabeel and Saeed T. Farah, Synthesis and Structural Studies on Some Transition metal complexes of Bis-(benzimidazole-2-thio) ethane, propane and butane ligands, Research Journal of Chemical Sciences, 2(6), 43-49, (2012)
  19. Singh B.N., Singh K. and Ahmad K., QSAR Study of Rabbit Aortic Angiotensin II Antagonists Compounds Using Different Descriptors, Research Journal of Chemical Sciences, 3(4), 81-83, (2013)
  20. Parr R.G. and Yang W., Density-Functional Theory of Atoms and Molecules, Oxford University Press: New York, (1989)
  21. Perdew J.P. and Kurth S., A Primer in Density Functional Theory, Springer: Berlin, (2003)
  22. Koch W. and Holthausen M.C., A Chemistís Guide to Density Functional Theory,Wiley-VCH: New York, (2000)
  23. Bingham R.C., Dewar M.J.S. and Lo D.H., Ground states of molecules. XXV. MINDO/3. Improved version of the MINDO semiempirical SCF-MO method, J. Am. Chem. Soc.97(6), 1285-1293, (1975)
  24. Pulay P., Ruoff A. and Sawodny W., Ab initio Hartree-Fock Calculation of the Force Constants of the Linear Molecules HCN, FCN, (CN) and the Ion N, Mol. Phys., 30, 1123-1130, (1975)
  25. Padron R.J., Carrasco, A. and Pellon R.F., Molecular descriptor based on a molar refractivity partition using Randic-type Figure-theoretical invariant, J. Pharm. Pharmaceut. Sci., 5(3), 258-266, (2002)
  26. Parr R.G. and Weitao Y., Density-functional theory of the electronic structure of molecules, Ann. Rev. Phys. Chem., 46, 701-728, (1995)
  27. Sanderson R.T., Chem Bond and Bond Energy, Academic Press: New York, 19, (1971)
  28. Parr R.G. and Pearson R.G., J. Am. Chem. Soc., 105, 7512-7516, (1983)