6th International Virtual Congress (IVC-2019) And Workshop.  International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Ranges of Electrons for Human Body Substances

Author Affiliations

  • 1Department of physics, B. S. A. College, Mathura 281004, INDIA
  • 2 Department of physics, B.S.A.C.E.T., Mathura 281004, INDIA
  • 3 Department of physics, Banasthali University, Rajasthan 304022, INDIA

Res.J.chem.sci., Volume 3, Issue (3), Pages 4-8, March,18 (2013)

Abstract

We present a relation for continuous slowing down approximation (CSDA) ranges for electrons of substances such as bones, muscles, fat and water in terms of energy from 30 keV to 1000 keV and have been fitted by three parameters. These parameters depend upon the total energy, density and effective atomic number of the absorber. It has been found that this method gives better agreement with the available experimental data.

References

  1. Zink K., Einführung in die Strahlentherapie und Therapie mit offenen Nukliden, FH Gießen, (2004)
  2. World Health Organization (WHO) Cancer Report- (2007)
  3. Mayles, P., Nahum, A. and Rosenwald, J.C. Handbook of Radiotherapy Physics, New York: Taylor and Francis, (2007)
  4. Maignegra-Hing E, Kawrakow I, Rogers D W O, Calculations for plane-parallel ion Chambers on 60Co beams using Monte Carlo code, Med. Phys, 30, 179-89 (2003)
  5. Zink, K and Wulff, J, Monte Carlo calculations of beam quality correction factor kQ for electron dosimetry with a parallel -plate Roos chamber, Phys. Med Biol., 53, 1595-160 (2008)
  6. Tan, Z., Xia, Y., Zhao, M., Liu, X., Li, F., Huang, B., Ji, Y., Electron stopping power and mean free path in organic compounds over the energy range of 20–10 000 eV, Nucl. Instrum. Meth. B,222, 27–43 (2004)
  7. Gumus H., Simple stopping power formula for low and intermediate energy electrons, Radiat. Phys. Chem., 72, 7–12 (2005)
  8. Akkerman, A., Akkerman, E., Characteristics of electron inelastic interactions in organic compounds and water over the energy range 20–10 000 eV, J. Appl. Phys., 86, 5809–5816 (1999)
  9. Dingfelder, M., Hantke, D., Inokuti, M., Paretzke, H.G., Electron inelastic scattering cross sections in liquid water, Radiat. Phys. Chem.,53, 1–18 (1998)
  10. Verne, J., Pimblott, M.S., Electron energy-loss distributions in solid, Dry DNA, Radiat. Res., 141, 208–215 (1995)
  11. Inokuti, M., Inelastic collisions of fast charged particles with atoms and molecules—the Bethe theory revisited, Rev. Mod. Phys., 43, 297–347 (1971)
  12. Nelms A., Energy loss and Ranges of electrons and positrons NBS circular no.577 (1956)
  13. Rohrlich F. and Carlson B. C., Positron-Electron Differences in Energy Loss and Multiple Scattering, Phys. Rev.,93, 38 (1954)
  14. Chaun-Jong Tung et al, CSDA Rangesof Electrons in Metals,Chinese J. Physics, 17, 1-11 (1979)
  15. Berger M. J. and Seltzer S. M., Tables of energy losses and ranges of electron and positron, NASA SP-3012 (1982)
  16. Gupta S. K. and Gupta D. K. An Empirical Equation for the c.s.d.a. Range Difference of 0.2- to 10-MeV Electrons, Japanese J. Applied Physics, 19, 1-3 (1980)
  17. Tan D. and Heaton B Applied Radiation and Isotope, Simple empirical relations for electron CSDA range and electron energy loss, Applied Radiation and Isotopes,45,527-28 (1994)
  18. Agrawal P., Rathi S. K. and Verma A. S., Continuous Slowing Down Approximation (CS and DA) Ranges of Electrons and Positrons for Carbon, Aluminium and Copper, Res. J. Rec. Sci., 70-76 (2012)