International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Combustion Synthesis of Boron Nitride by Glycine Route

    , ,
  1. 1Department of Materials Science, School of Chemistry, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, INDIA
  2. 2Electropyrometallurgy Division, CSIR – Central Electrochemical Research Institute, Karaikudi 630006, Tamil Nadu, INDIA

Author Affiliations

    Res.J.chem.sci., Volume 3, Issue (2), Pages 59-64, February,18 (2013)


    Crystalline boron nitride (BN) powders were prepared by combustion method using glycine as a fuel. Experiments were carried out by heating dehydrated borax (Na2B4O7) with NaNO2, KNO3, NH4NO3 in N2 atmosphere at 350oC and glycine was used as a fuel as well as a source for nitrogen. Borax was used as a boron source and nitrogen compounds (NaNO2, KNO3, NH4NO3) were used as the nitrogen source. The reactions were carried out in a tantalum autoclave having the provisions for the purging of N2 and vent gases. The as prepared samples were systematically characterized by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Fourier Transform Infrared spectroscopy (FTIR), UV-Visible spectroscopy (UV) and Photoluminescence spectroscopy (PL). The reaction has resulted in the form of hexagonal boron nitride with high purity and good yield.


    1. Laurence V., Gerard D. and Etoureau J., Cubic boron nitride: synthesis, physicochemical properties and applications, Mater. Sci. Eng., B 10, 149-164 (1991)
    2. Lipp A., Schwetz K.A. and Hunold K., Hexagonal boron nitride: Fabrication, properties and applications, J. Eu. Ceram. Soc., 5, 3-9 (1989)
    3. Gameza L.M., Shipilo V.B. and Sauuchuk V.A., Kinetic Features of Crystallization of Cubic Boron Nitride Single Crystals in the BNLiH(N,Se) System, Phys. Status Solidi B 98, 559-563 (1996)
    4. Hubacek M. and Sato T., The effect of copper on the crystallization of hexagonal boron nitride, J. Mater. Sci., 32, 3293-3297 (1997)
    5. Paine R.T. and Narula C.K., Synthetic routes to boron nitride, Chem. Rev., 90, 73- 91(1990)
    6. Kroto H.W., Heath J.R., Brien S.C.O., Curl R.F. and Smalley R.E., C60: Buckminsterfullerene, Nature 318, 162-163 (1985)
    7. Oku T., Synthesis and atomic structures of boron nitride nanotubes, Phys., B 323, 357-359 (2002)
    8. Guo Q., Xie Y., Yi C., Zhu L. and. Gao P., Synthesis of ultraviolet luminescent turbostratic boron nitride powders via a novel low-temperature, low-cost, and high-yield chemical route, J. Solid State Chem., 178, 1925-1928 (2005)
    9. Hao X., Dong S., Xu X., Cui D., Jiang M., Jiang M.H., Xu X.W. and Li Y.P., The effect of reactants on the benzene thermal synthesis of BN, Mater. Lett., 58, 2791-2794 (2004)
    10. Deepak F.L., Vinod C.P., Mukhopadhyay K., Govindraj A. and Rao C.N.R., Boron nitride nanotubes and nanowires, Chem. Phys. Lett., 353, 345-352 (2002)
    11. Tang C.C., Fan S.S., Li P., Liu Y.M. and Dang H. Y., Synthesis of boron nitride in tubular form, Mater. Lett., 51, 315-319 (2001)
    12. Hao X.P., Cui D.L., Shi G.X., Yin Y.Q., Xu X.G., Jiang M.H., Xu X.W. and Li Y.P., Low temperature benzene thermal synthesis and characterization of boron nitride nanocrystals, Mater. Lett., 51, 509-513 (2001)
    13. Chen L., Gu Y., Shi L., Yang Z., Ma J. and Quan Y., A room-temperature approach to boron nitride hollow spheres, Solid State Commun., 130, 537-540 (2004)
    14. Gomathi A. and Rao C.N.R., Nanostructures of the binary nitrides, BN, TiN, and NbN, prepared by the urea-route, Mater. Res. Bull., 41, 941-947 (2006)
    15. Fu J.J., Lu Y.N., Xu H., Huo K.F., Wang X.Z., Li L., Hu Z. and Chen Y., The synthesis of boron nitride nanotubes by an extended vapour–liquid–solid method, Nanotechnology 5, 727- 730 (2004)
    16. Zhang Y., He X., Hun J. and Du S., Combustion synthesis of hexagonal boron–nitride-based ceramics, J. Mater. Process. Technol., 116, 161-164 (2001)
    17. Narita I. and Oku T., Combustion synthesis of hexagonal boron–nitride-based ceramics, Diamond Relat. Mater., 11, 949-952 (2002)
    18. Patil K.C., Hegde M.S., Rattan T. and Aruna S.T., Chemistry of Nanocrystalline Oxide Materials: Combustion Synthesis, Properties and Applications, World Scientific, Singapore, (2008)
    19. Pooja D., Sharma S.K., Knobel M., Rani R. and Singh M., Magnetic Properties of Fe doped ZnO Nanosystems Synthesized by Solution Combustion Method, Res. J. Chem. Sci., 1(8), 48-52 (2012)
    20. Suresh K., Kumar N.R.S. and Patil K.C., A novel combustion synthesis of spinel ferrites, orthoferrites and garnets, Adv. Mater., 3, 148-150 (1991)
    21. Patil K.C., Advanced ceramics: Combustion synthesis and properties, Bull. Mater., Sci., 16, 533-541 (1993)
    22. Aruna S.T. and Mukasyan A.S., Combustion synthesis and nanomaterials, Crit. Rev. Solid State Mater. Sci., 12, 44-50 (2008)
    23. Joint Committee Powder Diffraction Standard: JCPDS No. 73-0925.
    24. Cholet V., Vandenbulcke L., Rouan J.P., Baillif P. and Erre R., Characterization of boron nitride films deposited from BCl3-NH3-H2 mixtures in chemical vapour infiltration conditions, J. Mater. Sci., 29, 1417-1435 (1994)
    25. Sahu S., Kavecky S., Ilesova L., Madejova J., Bertoti I. and Szepvolgyi J., Formation of boron nitride thin films on β-Si3N4 whiskers and α-SiC platelets by dip-coating, J. Eur. Ceram. Soc., 18, 1037- 1043 (1998)
    26. Joshi G.P., Saxena N.S., Mangal R., Mishra A. and Sharma T.P., Band gap determination of Ni–Zn ferrites, Bull. Mater. Sci., 26, 387- 389 (2003)
    27. Zunger A., Katzir A. and Halperin A., Optical properties of hexagonal boron nitride, Phys. Rev., B 13, 5560-5573 (1976) Jiang G., Xu J., Zhuang H. and L.i W., Ceram. Int., 37, 1689- 1691 (2011)