International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

On the Interactions of Sodium with Ammonia

Author Affiliations

  • 1Laboratoire de Chimie Analytique, de Radiochimie et d’Electrochimie (LACARE), UFR/SEA 03 BP 7021 Université de Ouagadougou, BURKINA FASO

Res.J.chem.sci., Volume 3, Issue (10), Pages 73-80, October,18 (2013)

Abstract

The interactions of sodium with ammonia in the gas phase are investigated. The optimized equilibrium geometries obtained at the DFT/B3LYP level using the 6-31G(d,p) basis set show that stable compounds Na(NH3)4 and Na(NH3)5 may result with respective dissociation energies of 42.5 and 48.0 kcal.mol-1 relative to their fragments Na and NH3. Upon addition of diffuse functions on Na and N, one gets 33.2 kcal.mol-1 for Na(NH3)4. The nature of the interactions was studied by NBO analysis through calculation of the second order perturbation energy. This showed that the most stabilizing interactions involve the donation of charge from the lone pairs of the ligands to Rydberg orbitals of Na and back-donation of charge from the singly occupied orbital of Na to the Rydberg orbitals of N and H and to the s*N-H. An occupation of the s*N-H and of the Rydberg orbitals of N and H by the odd electron of Na is therefore observed, which places its electron density near the positions of these nuclei. The calculated small Wiberg bond indices and the van der Waals penetration distance are in accord with a non-covalent type of interactions of the kind Lewis acid-Lewis base.

References

  1. Weyl W., Ueber Metallamonium-Verbindugen, Ann. Phys., 121, 606-612 (1864)
  2. Solutions Métal-Ammoniac: Propriétés Physico-chimiques (Eds.: G. Lepoutre, M. J. Sienko), Colloque Weyl I, Lille, FRANCE, (1963); Benjamin, New York, (1964)
  3. Metals in Solution, Colloque Weyl VII, Colloque C5, Aussois, FRANCE; Supplément au J. Phys. IV, 1(12) (1991)
  4. Glaunsinger W.S., Von Dreele R.B., Marzke R.F., Hanson R.C., Chieux P., Damay P. and Catterall R., Structures and properties of metal-ammonia compounds on the trail of a new ammonia geometry, J. Phys. Chem., 88(17), 3860- 3877 (1984)
  5. Comdellas C., Kanoufi F. and Thiébault A., Solutions of solvated electrons in liquid ammonia. Part 1. Chemical properties of magnesium solutions, J. Electroanal. Chem., 499(1), 144-151 (2001)
  6. Young V.G., Glaunsinger W.S. and Von Dreele R.B., Crystal structure of the expanded-metal compound tetraamine-d3-lithium, J. Am. Chem. Soc., 111(26), 9260- 9261 (1989)
  7. Dye J.L. and DeBacker M.G., Physical and chemical properties of alkalides and electrides, Ann. Rev. Phys. Chem. 38(1), 271-299 (1987)
  8. Dye J.L., Electrides: early examples of quantum confinement, Acc. Chem. Res, 42(10), 1564-1572 (2009)
  9. Comdellas C., Marzouk H., Thiébault A., Electrolytic equipment for reduction in liquid ammonia, J. Appl. Electrochem, 21(3), 267-275 (1991)
  10. Kavan L., Electrochemical carbon, Chem. Rev., 97(8), 3061-3082 (1997)
  11. Hertel I.V., Hüglin C., Nisch C. and Schulz C.P., Photo ionization of Na(NH3)n and Na(H2O)n clusters: a step towards the liquid phase?, Phys. Rev. Lett., 67(13),1767- 1770 (1991)
  12. Brockhaus P., Hertel I.V. and Schulz C.P., Electronically excited state in size-selected solvated alkali metal atoms. III. Depletion spectroscopy of Na(NH3)n clusters, J. Chem. Phys., 110(1), 393-402 (1999)
  13. Misaizu F., Tsukamoto K., Sanekata M. and Fuke K., Photoionization of clusters of Cs atoms solvated with H2O, NH3, CH3CN, Chem. Phys. Letters., 188(3-4), 241-246 (1992)
  14. Takasu R., Hashimoto K. and Fuke K., Study of microscopic solvation process of Li atom in ammonia clusters: photoionization and photoelectron spectroscopies of M(NH3)n (M = Li, Li- , Na- ), Chem. Phys. Lett., 258(1), 94-100 (1996)
  15. Zurek E., Edwards P.P. and Hoffmann R., A molecular perspective on lithium-ammonia, Angew., Chem., Int. Ed., 48(44), 8198-8232 (2009)
  16. Chandra A. and Marx D., Creating interfaces by stretching the solvent is key to Metallic Ammonia solutions, Angew., Chem. Int. Ed., 46( 20), 3676-3679 (2007)
  17. Tientega F., Electrical response properties of the alkali anions, geometric and electronic structure on Na2 2-, K2 2- and of Li(NH3)n (with n=1-4), Ph.D. dissertation, Michigan State University, East Lansing, Michigan, (1991)
  18. Mierzwicki K., Latajka Z., Nonadditivity of interaction in Li(NH3)n and Li(NH3)n + (n= 1-4) clusters, Chem. Phys., 265(3), 301-311 (2001)
  19. Hashimoto K., Morokuma K., Ab initio Mo study of Na(NH3)n (n=1-6) clusters and their ions: a systematic comparison with hydrated Na clusters, J. Am. Chem. Soc., 117(14), 4151-4159 (1995)
  20. Salter T.E. and Ellis A.M., Microsolvation of lithium in ammonia: dissociation energies and spectroscopic parameters of small Li(NH3)n clusters (n=1 and 2) and their cations, Chem. Phys., 332(1 ), 132-138 (2007)
  21. Frisch M.J. et al., Gaussian 09, Revision A02, Gaussian, Inc. Wallingford, CT, (2009)
  22. Lee C., Yang W. and Parr R.G., Development of the ColleSalvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B., 37(2), 785-789 (1988)
  23. Castleman Jr. A.W., Holland P.M., Lindsay D.M. and Peterson K.I., The properties of clusters in the gas phase. 2. Ammonia about metal ions, J. Am. Chem. Soc., 100(19), 6039-6045 (1978)
  24. Selegue T.J., Moe N., Draves J. A. and Lisy J.M., Gas phase solvation of Na+ with methanol, J. Chem. Phys., 96(10), 7268-7278 (1992)
  25. Marshi M., Sprik M. and Klein M.L., Solvation and ionization of alkali metals in liquid ammonia: a path integral Monte Carlo study, J. Phys. Condens. Matter, 2(26), 5833-5849 (1990)
  26. Reed A.E., Weinstock R.B. and Weinhold F., Natural population analysis, J. Chem. Phys., 83(2), 735-746 (1985)
  27. Catterall R., Metal-Ammonia Solutions, Colloque Weyl II, Ithaca New York, Butterworths, London, 105-131 (1970)
  28. O’Reilly D.E., Knight shifts and relaxation times of alkali metal and nitrogen nuclei in metal-ammonia solutions, J. Chem. Phys., 41(12), 3729-3735 (1964)
  29. Reed A.E., Curtiss L.A., Weinhold F., Intermolecular interactions from a Natural Bond Orbital, Donor-Acceptor viewpoint, Chem. Rev., 88(6), 899-926 (1988)
  30. Cotton F.A., Wilkinson G., Gaus P.L., Basic Inorganic Chemistry, 3rd Edition, John Wiley and Sons, Inc, 61 (1995)