International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Certain new dicyclopentadienyl titanium complexes derived from sterically impeded heterocyclic beta-diketones and beta-diketones: Generation, spectroscopic characterization and structure- antimicrobial activity relationship

Author Affiliations

  • 1Department of Chemistry, University of Rajasthan, Jaipur-302004, India
  • 2Department of Chemistry, University of Rajasthan, Jaipur-302004, India
  • 3Department of Chemistry, University of Rajasthan, Jaipur-302004, India

Res.J.chem.sci., Volume 11, Issue (3), Pages 6-13, October,18 (2021)

Abstract

A set of new dicyclopentadienyl titanium complexes was generated by the reactions of titanocene dichloride with sterically impeded heterocyclic beta-diketones (L(1)H=4-acetyl-2,4 dihydro-5-methyl-2-phenyl-3H-pyrazol-3-one, L(2)H=4-propanoyl-2,4 dihydro-5-methyl-2-phenyl 3H-pyrazol-3-one and L(3)H=4-(4-chloro)benzoyl-2,4 dihydro-5-methyl-2-phenyl 3H-pyrazol-3-one), beta-diketones (L'(1)H=pentane-2,4-dione, L'(2)H=1-phenylbutane-1,3-dione and L'(3)H=1,3-diphenylpropane-1,3-dione) and triethylamine in 1:1:1:2 molar ratio in refluxing dry THF. Plausible structures of these newly generated complexes were suggested based on spectroscopic and mass studies. Some representative complexes were also screened for their antimicrobial activity.

References

  1. Machat, M. R., Jandl, C., & Rieger, B. (2017)., Titanocenes in olefin polymerization: Sustainable catalyst system or an extinct species?., Organometallics, 36(7), 1408-1418.
  2. Kaluderovic, G.N., Quintanilla, D.P., Sierra, I., Prashar, S., Hierro, I., Izak, Z., Juranic, Z.D., Fajardoc, M. and Ruiz, S.G. (2010)., Study of the influence of the metal complex on the cytotoxic activity of titanocene-functionalized mesoporous materials., J. Mater. Chem., 20, 806–814.
  3. Guo, M., Sun, H., McArdle, H.J., Gambling, L. and Sadler, P.J. (2000)., Ti(IV)Uptake and Release by Human Serum Transferrin and Recognition of Ti(IV)-Transferrin by Cancer Cells: Understanding the Mechanism of Action of the Anticancer Drug Titanocene Dichloride., Biochemistry, 39(33), 10023-10033.
  4. Abeysinghe, P. M., & Harding, M. M. (2007)., Antitumour bis (cyclopentadienyl) metal complexes: titanocene and molybdocene dichloride and derivatives., Dalton Transactions, (32), 3474-3482.
  5. Hogan, M., Claffey, J., Pampillón, C., Watson, R. W. G., & Tacke, M. (2007)., Synthesis and cytotoxicity studies of new dimethylamino-functionalized and azole-substituted titanocene anticancer drugs., Organometallics, 26(10), 2501-2506.
  6. Verma, S., Joshi, A., Jain, A., & Saxena, S. (2004)., New mixed ligand complexes of dicyclopentadienyl titanium (IV) derived from sterically congested heterocyclic β-diketones and N-protected amino acids., Journal of Chemical Research, 2004(11), 768-772.
  7. Klapoetke, T. M., Koepf, H., Tornieporth-Oetting, I. C., & White, P. S. (1994)., Synthesis, Characterization, and Structural Investigation of the First Bioinorganic Titanocene (IV). Alpha.-Amino Acid Complexes Prepared from the Antitumor Agent Titanocene Dichloride., Organometallics, 13(9), 3628-3633.
  8. Florès, O., Trommenschlager, A., Amor, S., Marques,F., Silva, F., Gano, L., Dena, F., Campello, M.P.C., Goze, C., Bodio, E. and Gendre, P.L. (2017)., In vitro and in vivo trackable titanocene-based complexes using optical imaging or SPECT., Dalton Trans, 46(42), 14548–14555.
  9. Rezazadeh, M., Ghiasi, R. and Jamehbozorgi, S. (2018)., Influence of solvent and electric field on the structure and IR, 31P NMR spectroscopic properties of a titanocene–benzene complex., J. Appl. Spectrosc., 85(3), 526-534.
  10. Rosenthal, U., Burlakov, V. V., Arndt, P., Baumann, W., & Spannenberg, A. (2003)., The titanocene complex of bis (trimethylsilyl) acetylene: synthesis, structure, and chemistry., Organometallics, 22(5), 884-900.
  11. Fouegue, A. D. T., Nono, J. H., Nkungli, N. K., & Ghogomu, J. N. (2021)., A theoretical study of the structural and electronic properties of some titanocenes using DFT, TD-DFT, and QTAIM., Structural Chemistry, 32(1), 353-366.
  12. Jaraiz, M., Enriquez, L., Pinacho, R., Rubio, J. E., Lesarri, A., & Lopez-Perez, J. L. (2017)., A DFT-based computational-experimental methodology for synthetic chemistry: Example of application to the catalytic opening of epoxides by titanocene., The Journal of organic chemistry, 82(7), 3760-3766.
  13. Deng, C., & Zhou, L. (2010)., Binding of ansa-and non-ansa-titanocene anticancer drugs to DNA: a DFT study., Structural Chemistry, 21(4), 735-744.
  14. Semproni, S. P., Milsmann, C., & Chirik, P. J. (2012)., Side-on dinitrogen complexes of titanocenes with disubstituted cyclopentadienyl ligands: synthesis, structure, and spectroscopic characterization., Organometallics, 31(9), 3672-3682.
  15. Gallardo, J.F., Elie, B.T., Sadhukha, T., Prabha, S., Sanau, M., Rotenberg, S.A., Ramos, J.W. and Contel, M. (2015)., Heterometallic titanium–gold complexes inhibit renal cancer cells in vitro and in vivo., Chem. Sci., 6, 5269–5283.
  16. Burlakov, V.V., Arndt, P., Baumann, W., Spannenberg A., Rosenthal, U., Letov, A.V., Lyssenko, K.A., Korlyukov, A.A., Strunkina L.I., Minacheva, M. Kh. and Shur, V.B. (2001)., Synthesis and X-ray Crystal Structure Determination of New Zwitterionic Complexes of Titanocene., Organometallics, 20, 4072-4079.
  17. Sun, Z., Unruean, P., Aoki, H., Kitiyanan, B., & Nomura, K. (2020)., Phenoxide-Modified Half-Titanocenes Supported on Star-Shaped ROMP Polymers as Catalyst Precursors for Ethylene Copolymerization., Organometallics, 39(16), 2998-3009.
  18. Tang, X. Y., Liu, J. Y., & Li, Y. S. (2013)., Phosphine-Thiophenolate Half-Titanocene Chlorides: Synthesis, Structure, and Their Application in Ethylene (Co-) Polymerization., Catalysts, 3(1), 261-275.
  19. Gansäuer, A., Fleckhaus, A., Lafont, M. A., Okkel, A., Kotsis, K., Anoop, A., & Neese, F. (2009)., Catalysis via homolytic substitutions with C−O and Ti−O bonds: Oxidative additions and reductive eliminations in single electron steps., Journal of the American Chemical Society, 131(46), 16989-16999.
  20. Li, J. L., Gao, Z. W., Sun, P., Gao, L. X., & Tikkanen, W. (2011)., Ethanol catalyzed synthesis of titanocene aryl carboxylate complexes and crystal structure of (η5-C5H5) 2Ti (2-OH-5-S–O2CC6H3) 2., Inorganica Chimica Acta, 368(1), 231-236.
  21. Jerzykiewicz, L. B., Utko, J., Duczmal, M., & Sobota, P. (2009)., Titanocene as a precursor for a cyclopentadienyl-free titanium (iii)–manganese (ii) cluster: A new approach for nano-size materials., Dalton Transactions, (28), 5450-5452.
  22. Chaudhary, A., Sharma, N., Dhayal, V., Saxena, A., Nagar, M., & Bohra, R. (2011)., Synthesis and characterization of some bis (cyclopentadienyl) titanium (IV) complexes with internally functionalized oximes (LH): sol–gel transformations of Cp2TiCl2, Cp2TiClL and Cp2TiL2 to nano‐sized anatase titania., Applied Organometallic Chemistry, 25(3), 198-206.
  23. Sharma, S., Kumar, P., Jain, A., & Saxena, S. (2018)., Synergy between DFT Calculations and Experimental Studies on the Optimized Structures and the Antibacterial Potential of Some Novel Tetra‐and Penta Coordinated Organic‐Inorganic Hybrid Complexes of Titanium (IV)., Applied Organometallic Chemistry, 32(6), e4321.
  24. Maheshwari, K., Srivastava, M. K., Saxena, S., & Jain, A. (2017)., Effect of fluorinated/non‐fluorinated β‐diketones and side‐chain branching of N‐protected amino acids on the antibacterial potential of new heptacoordinated monobutyltin (IV) complexes., Applied Organometallic Chemistry, 31(6), e3628.
  25. Sharma, A., Jain, A., & Saxena, S. (2015)., The structure–activity relationship of some hexacoordinated dimethyltin (IV) complexes of fluorinated β‐diketone/β‐diketones and sterically congested heterocyclic β‐diketones., Applied Organometallic Chemistry, 29(8), 499-508.
  26. Pelletier, F., Comte, V., Massard, A., Wenzel, M., Toulot, S., Richard, P., Picquet, M., Gendre, P. L., Zava, O., Edafe, F., Casini, A. and Dyson, P.J. (2010)., Development of Bimetallic Titanocene-Ruthenium-Arene Complexes As Anticancer Agents: Relationships between Structural and Biological Properties., J.Med.Chem., 53, 6923-6933.
  27. Jensen, B. S. (1959)., The synthesis of 1-phenyl-3-methyl-4-acyl-pyrazolones-5., Acta Chem. Scand, 13(8), 1668-1670.
  28. Jain, A., Saxena, S., Rai, A. K., & Bohra, R. (2003)., Preparation, Structural Chemistry and Spectroscopic (IR, 1H & 13C) Characterization of Certain Lead (II) Complexes of Sterically Demanding Heterocyclic β-Diketones. X-Ray Crystal Structure of Bis [4-Acetyl-2, 4-Dihydro-5-Methyl-2-Phenyl-3H-Pyrazol-3-Onato) Lead (II), C24H22N4O4Pb., Main group metal chemistry, 26(1), 1-12.
  29. Perez, C. (1990)., Antibiotic assay by agar-well diffusion method., Acta Biol Med Exp, 15, 113-115.