International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Ethanol production from livestock manure: A review

Author Affiliations

  • 1Department of Agricultural and Bio-Environmental Engineering, Federal College of Agriculture, Ibadan, Nigeria
  • 2Department of Agricultural and Environmental Engineering, University of Ibadan, Ibadan, Nigeria

Res.J.chem.sci., Volume 11, Issue (2), Pages 7-19, June,18 (2021)

Abstract

As a result of drastic increase in population and industrialization, the demand for biofuels globally, particularly bioethanol is incessantly increasing. Common crops like sugarcane, corn and cassava are not able to satisfy the worldwide requirement of ethanol production because of their key importance of food and feed for humans and animals. Thus, interest is shifting to animal manures and other agricultural wastes as major lignocellulosic biomass feedstocks for production of bioethanol. Agricultural wastes are abundant, renewable and cost effective. Ethanol produced from agricultural wastes, particularly animal manures might be a likely technology however the process has a number of challenges such as conveyance and handling of biomass, and effectual pre-treatment techniques for complete delignification of lignocellulosics. Proper methods of pre-treatment can increase the quantities of fermentable sugars after enzymatic hydrolysis, thus improving the whole process efficiency. Availability of lignocellulosics as alternative feedstock, and improvement of technology has resulted to the emergence of several bio-conversion methods like separate hydrolysis and fermentation (SHF), simultaneous saccharification and fermentation (SSF), simultaneous saccharification and co-fermentation (SSCF), and consolidated bio-processing (CBP). In order to convert glucose and any other sugar to ethanol, it needs those fermentation technologies mentioned earlier to make the whole process cost effective. Those bio-conversion technologies are direct fermentation methods where biomass feed stocks are pre-treated, hydrolysed and fermented to ethanol. This review paper explains those available technologies for ethanol production from livestock manure and other major agricultural materials which include their benefits, limitations and possible effects on the environment.

References

  1. Woldesenbet, A. G., Shiferaw, G., & Chandravanshi, B. S. (2013)., Bio-ethanol production from poultry manure at Bonga Poultry Farm in Ethiopia., African Journal of Environmental Science and Technology, 7(6), 435-440.
  2. Attygalle, A. (2008)., Instrumental analysis., Institute of Technology, Diaz Publication, London.
  3. Scott, F., Quintero, J., Morales, M., Conejeros, R., Cardona, C. and Aroca, G. (2013)., Process design and sustainability in the production of bioethanol from lignocellulosic materials. Bio. Technol., 16(3), 1-7., undefined
  4. Champagne, P. (2008)., Bioethanol from agricultural waste residues., Environmental progress, 27(1), 51-57.
  5. Fernandez-Lopez, M., Puig-Gamero, M., Lopez-Gonzalez, D., Avalos-Ramirez, A., Valverde, J., and Sanchez-Silva, L. (2015)., Life cycle assessment of swine and dairy manure: Pyrolysis and combustion processes., Bioresource Technology, 182, 184-192. DOI:10.1016/j.biortech.2015. 01.140.
  6. Nasir, I.M., Mohd Ghazi, T.I., and Omar, R. (2012)., Anaerobic digestion technology in livestock manure treatment for biogas production., Engineering in Life Sciences, 12(3), 258-269. DOI: 10.1002/elsc.201100150.
  7. Yue, Z.B., Teater, C., Liu, Y., MacLellan, J., and Liao, W. (2010)., A sustainable pathway of cellulosic ethanol production integrating anaerobic digestion with bio-refining., Biotechnology and Bioengineering, 105(6), 1031-1039. DOI:10.1002/bit.22627
  8. Mojović, L., Nikolić, S., Rakin, M., & Vukasinović, M. (2006)., Production of bioethanol from corn meal hydrolyzates., Fuel, 85(12-13), 1750-1755. http://dx.doi. org/10.1016/j.fuel.2006.01.018
  9. Almodares, A. and Hadi, M.R. (2009)., Production of bioethanol from Sweet Sorghum: A review., African Journal of Agricultural Research, 4, 772-780.
  10. Vohra, M., Manwar, J., Manmode, R., Padgilwar, S. and Patil, S. (2014)., Bioethanol production: Feedstock and current technologies., Journal of Environmental Chemical Engineering, 2, 573-584. http://dx.doi.org/10.1016/j.jece. 2013.10.013
  11. Muktham, R., Bhargava, S.K., Bankupalli, S. and Ball, A.S. (2016)., A review on 1st and 2nd generation bioethanol production- recent progress., Journal of Sustainable Bioenergy Systems, 6, 72-92.
  12. Bai, F., Anderson, W. and Moo-Young, M. (2008)., Ethanol fermentation technologies from sugar and starch feedstocks., Biotechnol. Adv., 26(1), 89105.
  13. Ogbonna, J.C., Mashima, H. and Tanaka, H. (2001)., Scale up of fuel ethanol production from Sugar beet juice using Loofa sponge immobilized bioreactor., Bioresource Technology, 76, 1-8. http://dx.doi.org/10.1016/S0960-8524 (00)00084-5
  14. Berguninger, W.F., Piyachomkwan, K. and Sriroth, K. (2008)., Tapioca/Cassava starch: Production and use., In: Be-Miller, J. and Whistler, R., Eds., Starch Chemistry and Technology, 3rd Edition, Academic Press, New York, 544.
  15. Hashizume, T., Higa, S., Sasaki, Y., Yamazaki, H., Iwamura, H. and Matsuda, H. (1966)., Constituents of cane molasses., Agricultural and Biological Chemistry, 30, 319-329. http://dx.doi.org/10.1080/00021369.1966.10858603
  16. Billa, E., Koullas, D.P., Monties, B. and Koukios, E.G. (1997)., Structure and composition of Sweet Sorghum stalk components., Industrial Crops and Products, 6, 297-302. http://dx.doi.org/10.1016/S0926-6690(97)00031-9
  17. Nigam, P. and Singh, D. (1995)., Enzyme and microbial systems involved in starch processing., Enzyme Microb. Technol., 17(9), 770-778.
  18. Balan, V., Chiaramonti, D. and Kumar, S. (2013)., Review of US and EU initiatives toward development, demonstration and commercialization of lignocellulosic biofuels., Biofuels, Bioproducts and Biorefining, 7, 732-759. http://dx.doi.org/10.1002/bbb.1436
  19. Naik, S., Goud, V.V., Rout, P.K., and Dalai, A.K. (2010)., Production of first and second generation biofuels: A comprehensive review., Renew. Sustainable Energy Rev., 14(2), 578-597.
  20. Verpy, T., & Petersen, G. (2004)., Top Value Added Chemicals From Biomass, National Renevable Energy Labotatory., DOE/GO-102004-1992.
  21. Kumar, P., Barrett, D.M., Delwiche, M.J. and Stroeve, P. (2009)., Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuels production., Industrial and Engineering Chemistry Research, 48, 3713-3729. http://dx.doi.org/10.1021/ie801542g
  22. Menon, V. and Rao, M. (2012)., Trends in bioconversion of lignocelluloses: Biofuel, platform chemicals & biorefinery concept., Progress in Energy and Combustion Science, 38, 522-550. http://dx.doi.org/10.1016/j.pecs. 2012.02.002
  23. Cherubini, F. (2010)., The biorefinery concept: Using biomass instead of Oil for producing energy and chemicals., Energy Conversion and Management, 51, 1412-1421. http://dx.doi.org/10.1016/j.enconman.2010.01. 015
  24. Demirbas, A. (2005)., Bioethanol from cellulosic materials: A renewable motor fuel from biomass., Energy Sources, 27, 327-337. http://dx.doi.org/10.1080/00908310 390266643
  25. Lin, Y. and Tanaka, S. (2006)., Ethanol fermentation from biomass resources: Current state and prospects., Applied Microbiology and Biotechnology, 69, 627-642. http://dx.doi.org/10.1007/s00253-005-0229-x
  26. Dien, B.S., Cotta, M.A. and Jeffries, T.W. (2003)., Bacteria engineered for fuel ethanol production: Current status., Applied Microbiology and Biotechnology, 63(3), 258-266. http://dx.doi.org/10.1007/s00253-003-1444-y
  27. Saha, B.C., Qureshi, N., Kennedy, G.J. and Cotta, M.A. (2016)., Biological pretreatment of Corn stover with white-rot fungus for improved enzymatic hydrolysis., International Biodeterioration and Biodegradation, 109, 29-35. http://dx.doi.org/10.1016/j.ibiod.2015.12.020
  28. Jung, Y.R., Park, J.M., Heo, S.Y., Hong, W.K., Lee, S.M., Oh, B.R., Park, S.M., Seo, J.W. and Kim, C.H. (2015)., Cellulolytic enzymes produced by a newly isolated soil fungus Pencillium sp. TG2 with potential for use in cellulosic ethanol production., Renewable Energy, 76, 66-71. http://dx.doi.org/10.1016/j.renene.2014.10.064
  29. Ha, S.J., Galazka, J.M., Kim, S.R., Choi, J.H., Yang, X., Seo, J.H., Glass, N.L., Cate, J.H.D. and Jin, Y.S. (2011)., Engineered Saccharomyces cerevisiae capable of simultaneous Cellobiose and Xylose fermentation., Proceedings of the National Academy of Sciences of the United States of America, 108, 505-509. http://dx.doi.org/10.1073/pnas.1010456108
  30. Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y. Y., Holtzapple, M., & Ladisch, M. (2005)., Features of promising technologies for pretreatment of lignocellulosic biomass., Bioresource technology, 96(6), 673-686.
  31. Lynd, L.R. (1996)., Overview and evaluation of fuel ethanol from cellulosic biomass: Technology, economics, the environment and policy., Annual Review of Energy and the Environment, 21, 403-65, 1996.
  32. Gutierrez, L.F., Sanchez, O.J. and Cardona, C.A. (2009)., Process integration possibilities for biodiesel production from Palm Oil using ethanol obtained from lignocellulosic residues of Oil Palm industry., Bioresource Technology, 100(3), 1227-1237.
  33. Mooney, C.A., Mansfield, S.D., Beatson, R.P., and Saddler, J.N. (1999)., The effect of fibre characteristic on hydrolysis and cellulose accessibility to softwood substrates., Enzyme and Microbial Technology, 25 (8-9), pp. 644-650.
  34. Mood, S.H., Golfeshana, A.H., Tabatabaeib, M., Jouzanib, G.S., Najafic, G.H., Gholamib, M., and Ardjmand, M. (2013)., Lignocellulosic biomass to bioethanol, a comprehensive review with a focus to pre-treatment., Renewable and Sustainable Energy Reviews, 27, 77-93.
  35. El-Naggar, N.E., Deraz, S. and Khalil, A. (2014)., Bioethanol production from lignocellulosic feedstocks based on enzymatic hydrolysis: Current status and recent developments., Biotechnology, 13(1), 1-21.
  36. Li, A., Antizar-Ladislao, B. and Khraishah, M. (2007)., Bioconversion of municipal solid waste to glucose for bioethanol production., Bioprocess and Bio-systems Engineering; 30(3), 189 - 196.
  37. Yan, S., Li, J., Chen, X., Wu, J., Wang, P. and Ye, J. (2011)., Enzymatical hydrolysis of food waste and ethanol production from the hydrolysate., Renewable Energy, 36 (4), 1259 - 1265.
  38. Jahnavi Gentela, Govumoni Sai Prashanthi, Koti Sravanthi and Linga Venkateswar Rao (2017)., Status of availability of lignocellulosic feedstocks in India: Biotechnological strategies involved in the production of bioethanol., Renewable and Sustainable Energy Reviews, 73(2017), 798 - 820.
  39. Taherzadeh, M.J. and Karimi, K. (2008)., Pre-treatment of lignocellulosic waste to improve ethanol and biogas production: A review., International Journal of Molecular Sciences, 9 (9), 1621-1651.
  40. Taherzadeh, M. J. & Karimi, K. (2007)., Acid-based hydrolysis processes for ethanol from lignocellulosic materials: a review., Bio Resources, 2(3), 472-499.
  41. Moe, S. T., Janga, K. K., Hertzberg, T., Hagg, M. B., Řyaas, K. & Dyrset, N. (2012)., Saccharification of lignocellulosic biomass for biofuel and biorefinery applications-a renaissance for the concentrated acid hydrolysis?., Energy Procedia, 20, 50-58.
  42. Zhuang, J., Liu, Y., Wu, Z., Sun, Y. and Lin, L. (2009)., Hydrolysis of wheat straw hemicellulose and detoxification of the hydrolysate for xylitol production., Bioresources, 4, 674-86.
  43. Lenihan, P., Orozco, A., O’Neill, E., Ahmad, M.N.M., Rooney, D.W. and Walker, G.M. (2010)., Dilute acid hydrolysis of lignocellulosic biomass., Chem. Eng. J. 156, 395-403.
  44. Girio, F.M., Fonseca, C., Carvalheiro, F., Duarte, L.C., Marques, S., and Bogel-Łukasik, R. (2010)., Hemicelluloses for fuel ethanol: A review., Bioresour. Technol., 101, 4775-800.
  45. Persson, I., Tjemeld, F., and Hagerdal, B.H. (1991)., Fungal cellulolitic enzyme production: An overview., Proc. Biochem., 26, 65-74.
  46. Saha, B.C., Iten, L.B., Cotta, M.A., Wu, Y.V. (2005b)., Dilute acid pre-treatment, enzymatic saccharification and fermentation of wheat straw to ethanol., Process Biochemistry, 40(12), 3693-3700.
  47. Wingren, A., Galbe, M., Roslander, C., Rudolf, A., and Zacchi, G. (2005)., Effect of reduction in yeast and senzyme concentrations in a simultaneous-saccharification-and-fermentation-based bioethanol process: Technical and economic evaluation., Applied Biochemistry and Biotechnology, 122-124, 485-499.
  48. Waites, M.J., Morgan, N.L., Rockey, J.S., and Higton, G. (2011)., Industrial microbiology: An introduction., Osney Mead, Oxford: Blackwell Science.
  49. Osunkoya, O. A. and Okwudinka, N. J. (2011)., Utilization of sugar refinery waste (molasses) for ethanol production using Saccharomyces Cervicae., American Journal of Scientific and Industrial Research, 2(4), 694-706.
  50. Classen, P.A.M., Van Lier, J.B., Lopez, A.M., Van Niel, E.W. J., Sijtsma, L., Stams, A.J.M., De Vries, S.S., and. Weusthuis, R.A. (1999)., Utilization of biomass for the supply of energy carriers., Applied Microbiology and Biotechnology, 52 (6), 741-755.
  51. Kunz, M. (2008)., Bioethanol: Experiences from running plants, optimization and prospects., Biocatalysis and Biotransformation, 26(1-2), 128-132.
  52. Sanchez, O.J. and Cardona, C.A. (2008)., Trends in biotechnological production of fuel ethanol from different feedstock., Bioresource Technology, 99(13), 5270-5295.
  53. Picataggio, S. and Zhang, M. (1996)., Microorganism development for bioethanol production from hydrolysates., In: Wyman CE, editor. Handbook on bioethanol: Production and utilization. Washington, DC: Taylor and Francis; 163-78.
  54. Wang, C., Wu, G., Chen, C., & Chen, S. (2012)., High production of β-glucosidase by Aspergillus niger on corncob., Applied Biochemistry and Biotechnology, 168(1), 58-67.
  55. Shuler, M.L., and Kargi, F. (2008)., Bioprocessing engineering basic concepts., Ed. Prentice Hall International Series, Castleton, New York, 2nd Edition, p. 551.
  56. Schell, D. J., Torget, R., Power, A., Walter, P. J., Grohmann, K., & Hinman, N. D. (1991)., A technical and economic analysis of acid-catalyzed steam explosion and dilute sulfuric acid pretreatments using wheat straw or aspen wood chips., Applied biochemistry and biotechnology, 28(1), 87-97.
  57. Takagi, H., Iwamoto, F. and Nakamori, S. (1997)., Isolation of freeze-tolerant laboratory strains of saccharomyces cerevisiae from proline-analogue-resistant mutants., Appl. Microbiol. Biotechnol., 47(4), 405-11.
  58. Jesper Norgard (2005)., Ethanol production from biomass, optimization of simultaneous saccharification and fermentation with respect to stirring and heating., pp. 1-5.
  59. Dien, B.S., Cotta, M.A. and Jeffries, T.W. (2003)., Bacteria engineered for fuel ethanol production: Current status., Applied Microbiology and Biotechnology, 63(3), 258-266. http://dx.doi.org/10.1007/s00253-003-1444-y
  60. Hahn-Hagerdal, B., Karhimaa, K., Fonseca, C., Spencer-Martins, I. and Gorwa-Grauslund, M. S. (2007)., Toward industrial pentose-fermenting yeast strains., Appl. Microbiol. Biotechnol., 74, 937-953.
  61. Lynd, L.R., Zyl, W.H.v, McBride, J.E., and Laser, M. (2005)., Consolidated bioprocessing of cellulosic biomass: An update., Curr. Opin. Biotechnol, 16(5), 577-583.
  62. Hasunuma, T. and Kondo, A. (2012)., Consolidated bio-processing and simultaneous saccharification and fermentation of lignocellulose to ethanol with thermotolerant yeast strains., Process Biochem., 47(9), 1287-94.
  63. Parisutham, V., Tae, H.K., and Sung, K.L. (2014)., Feasibilities of consolidated bioprocessing microbes: from pre-treatment to biofuel production., Bioresour. Technol., 161, 431 - 40.
  64. Xu, Q., Singh, A., and Himmel, M.E. (2009)., Perspectives and new directions for the production of bioethanol using consolidated bioprocessing of lignocellulose., Curr Opin Biotechnol., 20, 364-71.
  65. Dashtban, M., Schraft, H., and Qin, W. (2009)., Fungal bioconversion of lignocellulosic residues; opportunities and perspectives., Int. J. Biol. Sci., 5, 578-95.
  66. Choudhary, J., Singh, S., & Nain, L. (2016)., Thermotolerant fermenting yeasts for simultaneous saccharification fermentation of lignocellulosic biomass., Electronic Journal of Biotechnology, 21, 82-92.
  67. Hamelinck, C.N., Hooijdonk, G.V., and Faaij. A. (2005)., Ethanol from lignocellulosic biomass: techno-economic performance in short, middle and long-term., Biomass and Bioenergy, 28, 384 -410.
  68. Wooley, R., Ruth, M., Sheehan, J., Ibsen, K., Majdeski, H., & Galvez, A. (1999)., Lignocellulosic biomass to ethanol process design and economics utilizing co-current dilute acid prehydrolysis and enzymatic hydrolysis current and futuristic scenarios (No. NREL/TP-580-26157)., National Renewable Energy Lab., Golden, CO (US).
  69. Parisi, F. (1986)., Bioconversion and separation., In: European workshop on bioethanol. Commission of the European Communities: Brussels, 1986; 59-69.
  70. Davison, B., Evans, B., Finkelstein, M., McMillan, J., Liao, W. and Wen, Z. (2005)., Effects of hemicellulose and lignin on enzymatic hydrolysis of cellulose from dairy manure., in: 26th Symposium on biotechnology for fuels and chemicals. Humana Press, pp. 1017-1030.
  71. Wen, Z., Liao, W. and Chen, S. (2004)., Hydrolysis of animal manure lignocellulosics for reducing sugar production., Bioresource Technology, 91(1), 31-39.
  72. Li, C. (2004)., Enzymatic hydrolysis of cellulose from various waste sources and their feasibility as feedstocks for ethanol production., Doctoral dissertation, Carleton University.
  73. Galbe, M. and Zacchi, G. (2002)., A review of the production of ethanol from softwood., Applied Microbiology and Biotechnology, 59; 618 - 628.
  74. Isenberg, G. (1999)., Assessment of automotive fuels., Journal of Power Sources, 84(2), 214-217.
  75. Wyman, C.E. (1999)., Biomass ethanol: Technical progress, opportunities, and commercial challenges., Annual Review of Energy and the Environment, 24, 189-226.
  76. Granda, Cesar B., Holtzapple, Mark T., and Zhu, Li (2007)., Sustainable liquid biofuels and their environmental impact., Environmental Progress, 26(3), 233-250.