International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Electro-oxidation and determination of atenolol-A review

Author Affiliations

  • 1Department of Chemistry, Sri Dharmasthala Manjunatheshwara College (Autonomous), Ujire-574 240, India
  • 2Department of Chemistry, Sri Dharmasthala Manjunatheshwara College (Autonomous), Ujire-574 240, India
  • 3P.G. Department of Studies in Chemistry, Karnatak University, Dharwad-580 003, India

Res.J.chem.sci., Volume 11, Issue (1), Pages 75-83, February,18 (2021)


This mini review is dedicated to electrochemical studies on atenolol. Electrochemical methods are known for its low cost, fast response, simple and selective alternates to classical methods such as chromatographic and spectral methods. However till date, a review on electro oxidation and determination of atenolol has not been reported. Major part of this article deals with voltrammetric sensors developed using untailored and tailored electrodes of carbon for the detection of atenolol. In this mini review, amperometric, potentiometric and capillary electrophoresis methods were also discussed. The methods developed are used successfully for the detection of atenolol in different samples like urine, serum, natural water and tablet dosages.


  1. Emilien G., Malotcaux J.M. and Emilion G. (1998)., Current therapeutic uses and potential of β-adrenoceptor agonists and antagonists., Eur J Clin Pharm., 53, 389-404.
  2. Snook C. P., Sigvaldason K. and Kristinsson J. (2000)., Severe atenolol and diltiazem overdose., J Tox Clin Tox., 38, 661-665
  3. Abbasi I.A. and Sorsby S. (1986)., Prolonged toxicity from atenolol overdose in an adolescent., Clin Pharm., 5, 836-837
  4. Arastou R., Ebrahimi M. and Bozorgmehr M.R. (2019)., Application of response surface modeling and chemometrics methods for the determination of atenolol, metoprolol and propranolol in blood sample using dispersive liquid-liquid microextraction combined with HPLC-DAD., J Chromat B, 1132, 121823.
  5. Alireza K., Lotfi R., Hasanzadeh A., Iranifam M. and Joo S.W. (2016)., Flow-injection chemiluminescence analysis for sensitive determination of atenolol using cadmium sulfide quantum dots., Spectrochim. Acta Part A: Molec Biomolec Spectr., 157, 88-95.
  6. Valliappan K. and Mannemala S. S. (2016)., Simultaneous enantioseparation and purity determination of chiral switches of amlodipine and atenolol by liquid chromatography., J Pharma Biomed Anal., 120, 221-227.
  7. Nesrine T.L. (2015)., Simultaneous determination of binary mixture of amlodipine besylate and atenolol based on dual wavelengths., Spectrochim Acta Part A: Molec Biomolec Spectr., 149, 201-207.
  8. Sameh A., Alqurshib A., Maaboud A. and Mohamedc I. (2018)., Development of a chromatographic method with multi-criteria decision making design for simultaneous determination of nifedipine and atenolol in content uniformity testing., Talanta, 184, 296-306.
  9. Graham L., Cocks E. and Tanna S. (2012)., Quantitative determination of atenolol in dried blood spot samples by LC-HRMS: A potential method for assessing medication adherence., J Chromat B., 897 72-79.
  10. Patricia C. D. (2011)., Determination of atenolol in human urine by emission-excitation fluorescence matrices and unfolded partial least-squares with residual bilinearization., Talanta, 85, 1526-1534.
  11. Chetankumar K. and Kumaraswamy B.E. (2020)., Electrochemically nitric acid pre-treated glassy carbon electrode sensor for catechol and hydroquinone: A voltammetric study., Sens Int., 1, 100001.
  12. Hegde R.N., Shetti N.P. and Nandibewoor S.T. (2009)., Electro-oxidation and determination of trazodone at multi- walled carbon nanotube modified glassy carbon electrode., Talanta, 79, 361-368.
  13. Tsukasa S., Matsumoto G. and Tsukahara S. (1979)., Electrical properties of glassy-carbon electrodes., Med Biolog Eng Comp., 17, 465-470.
  14. Hegde R. N., Kumaraswamy B. E., Sherigara B. S. and Nandibewoor S. T. (2008)., Electro-oxidation of atenolol at a glassy carbon electrode., Int J Electrochem Sc., 3, 302-304.
  15. Goyal R. N. and Singh S. P. (2006)., Voltammetric determination of atenolol at C60-modified glassy carbon electrodes., Talanta, 69, 932-937.
  16. Griese S., Kampouris D. K., Kadara R. O. and Banks C. E. (2008)., Misinterpretations of the electro-catalysis observed at C60 modified glassy carbon electrodes for the determination of atenolol., Electrochem Commun., 10, 1633-1635.
  17. Shashikumara J. K. and Kumaraswamy B. E. (2020)., Electrochemical investigation of dopamine in presence of uric acid and ascorbic acid at poly(reactive blue) modified carbon paste electrode: a voltammetric study., Sens Int., 1, 100008.
  18. Patil R. H., Hegde R. N. and Nandibewoor S. T. (2009)., Voltammetric oxidation and determination of atenolol using a carbon paste electrode., Ind Eng Chem Res., 48, 10206-10210.
  19. Goyal R. N., Gupta V. K., Oyama M. and Bachheti N. (2006)., Differential pulse voltammetric determination of atenolol in pharmaceutical formulations and urine using nanogold modified indium tin oxide electrode., Electrochem Commun., 8, 65-70.
  20. Khairy M., Khorshed A. A., Rashwan F. A., Salah G. A., Abdel-Wadood H. M. and Banks C. E. (2017)., Simultaneous voltammetric determination of antihypertensive drugs nifedipine and atenolol utilizing MgO nanoplatelet modified screen-printed electrodes in pharmaceuticals and human fluids., Sens Act. B: Chemical., 252, 1045-1054.
  21. Gabriela D., Cristea C., Ede B., Harceaga V., Saponar A., Popovici E. and Sandulescu R. (2010)., The electrochemical behavior of some beta-blockers on screen printed electrodes modified with calixarene., Farmacia, 58, 430-446.
  22. Pankaj G. and Goyal R. N. (2016)., Amino functionalized graphene oxide and polymer nanocomposite based electrochemical platform for sensitive assay of anti-doping drug atenolol in biological fluids., J Electrochem Soc., 163, 601-608.
  23. Priscila C. L., eder A. R. and Cavalheiro T. G. (2007)., Determination of atenolol at a graphite-polyurethane composite electrode., Talanta, 72, 206-209.
  24. Elen R. S., Medeiros R. A., Rocha-Filho R. C. and Fatibello-Filho O. (2010)., Square-wave voltammetric determination of propranolol and atenolol in pharmaceuticals using a boron-doped diamond electrode., Talanta, 81, 1418-1424.
  25. Moraes J. T., Eisele A. P. P. Carlos A. R., Neto S., Scremin J. and Sartori E. R. (2016)., Simultaneous voltammetric determination of antihypertensive drugs amlodipine and atenolol in pharmaceuticals using a cathodically pretreated boron-doped diamond electrode., J Braz Chem Soc., 27, 1264-1272.
  26. Jessica S. and Sartori E. R. (2018)., Simultaneous determination of nifedipine and atenolol in combined dosage forms using a boron-doped diamond electrode with differential pulse voltammetry., Can J Chem., 96, 1-7.
  27. Innocenzo G. C., Bonito R. and Contursi M. (2016)., Determination of some β‐blockers by electrochemical detection on polycrystalline gold electrode after solid phase extraction., Electroanalysis, 28, 1060-1067.
  28. Ebrahim S., Moataz S., Wagih S. and Mohamed S. (2011)., A novel atenolol sensor based on polypyrrole electrode and using differential pulse voltammetry., Sens Lett., 9, 1423-1429.
  29. Shaterian M., Aghaei A., Koohi M., Teymouri M. and Mohammadi-Ganjgah A. (2020)., Synthesis, characterization and electrochemical sensing application of CoFe2O4/ graphene magnetic nanocomposite for analysis of atenolol., Polyhedron, 182, 114479.
  30. Carolina M. F. C., Cervini P. and Cavalheiro e. T. G. (2012)., Determination of atenolol in environmental water samples and pharmaceutical formulations at a graphite-epoxy composite electrode., Int J Env Anal Chem., 92, 561-570.
  31. Behpour M., Honarmand E. and Ghoreishi S. M. (2010)., Nanogold-modified carbon paste electrode for the determination of atenolol in pharmaceutical formulations and urine by voltammetric methods., Bul Kor Chem Soc., 31, 845-849.
  32. Behpour M., Ghoreishi S. M. and Honarmand E. (2010)., A gold nanoparticle-modified carbon paste electrode as a sensor for simultaneous determination of acetaminophen and atenolol., Int J Electrochem Sc., 5, 1922-1933.Masumeh T., Hasanpour F. and Shavakhi M. (2015).
  33. Mohammad H., Pournaghi-Azar M. H., Shadjou N. and Jouyban A. (2014)., Magnetic nanoparticles incorporated on functionalized mesoporous silica: an advanced electrochemical sensor for simultaneous determination of amiodarone and atenolol., RSC Advance, 4, 4710-4717.
  34. Majid A., Vaziri M. and Vejdani M. (2010)., Electrochemical study of atenolol at a carbon paste electrode modified with mordenite type zeolite., Mat Sc Eng C, 30, 709-714.
  35. Huan T. N., Rousse G., Zanna S., Lucas I. T., Xu X., Menguy N., Mougel V. and Fontecave M. (2017)., A dendritic nanostructured copper oxide electrocatalyst for the oxygen evolution reaction., Angew Chem., 56, 4792-4796.
  36. Nasrin S., Hasanzadeh M., Saghatforoush L., Mehdizadeh R. and Jouyban A. (2011)., Electrochemical behavior of atenolol, carvedilol and propranolol on copper-oxide nanoparticles., Electrochim Acta, 58, 336-347.
  37. Iijima S. (1991)., Helical microtubules of graphitic carbon., Nature, 354, 56-58.
  38. Ajayan P. M. (1999)., Nanotubes from carbon., Chem Rev., 99, 1787-1800.
  39. Nugent J. M., Santhanam K. S. V., Rubio A. and Ajayan P.M. (2001)., Fast electron transfer kinetics on multiwalled carbon nanotube microbundle electrodes., Nano Let., 1, 87-91.
  40. Zhao G., Yin Z., Zhang L. and Xian X. (2005)., Direct electrochemistry of cytochrome c on a multi-walled carbon nanotubes modified electrode and its electrocatalytic activity for the reduction of H2O2., Electrochem Commun., 7, 256-260.
  41. Asma K., Ghoreishi S. M., Masoum S. and Behpour M. (2013)., Multivariate curve resolution-alternating least squares assisted by voltammetry for simultaneous determination of betaxolol and atenolol using carbon nanotube paste electrode., Bioelectrochemistry, 94 100-107.
  42. Movlud V., Khoobi A. and Salavati-Niasari M. (2020)., Green synthesis and characterization of DyMnO3-ZnO ceramic nanocomposites for the electrochemical ultratrace detection of atenolol., Mat Sc Eng: C, 111, 110854.
  43. Hegde R. N., Chandra P. and Nandibewoor S. T. (2011)., Sensitive voltammetric determination of atenolol at multi-walled carbon nanotube modified electrode., Res J Nanosc Nanotech., 1, 75-86.
  44. Adenier A., Chehimi M. M., Gallardo I., Pinson J. and Vila N. (2004)., Electrochemical oxidation of aliphatic amines and their attachment to carbon and metal surfaces., Langmuir, 20, 8243-8253.
  45. Zhao K., Hongtao C., Yue Y., Zhihong B., Fangzheng L. and Sanming L. (2015)., Platinum nanoparticle-doped multiwalled carbon-nanotube-modified glassy carbon electrode as a sensor for simultaneous determination of atenolol and propranolol in neutral solution., Ionics, 21, 1129-1140.
  46. Sharma S., Jadon N. and Jain R. (2018)., Development of electrochemical sensor for simultaneous quantification of atenolol and losartan potassium., Nanosc Tech., 5, 1-13.
  47. Stela P., Pogacean F., Grosan C., Pica E. M., Bolundut L. C. and Biris A. S. (2011)., Electrochemical investigation of atenolol oxidation and detection by using a multicomponent nanostructural assembly of amino acids and gold nanoparticles., Chem Phy Let., 504, 56-61.
  48. Mandana A., Amali E. and Nematollahzadeh A. (2015)., Poly-dopamine thin film for voltammetric sensing of atenolol., Sens Actuators B: Chemical, 216, 551-557.
  49. Franco M. A., Ara˙jo D. A. G., Oliveira L. H., Trindade M. A. G., Takeuchi R. M. and Santos A. L. (2016)., An amperometric FIA system with carrier recycling: an environmentally friendly approach for atenolol determination in pharmaceutical formulations., Anal Meth., 8, 8420-8426.
  50. Priscila C. and Cavalheiro e. T. G. (2008)., Graphite-polyurethane composite electrode as an amperometric flow detector in the determination of atenolol., Anal Let., 41, 1867-1877.
  51. Silva A. A., Silva L. A. J., Munoz R. A. A., Oliveira A. C. and Richter E. M. (2016)., Determination of amlodipine and atenolol by batch injection analysis with amperometric detection on boron‐doped diamond electrode., Electroanalysis, 28, 1455-1461.
  52. Maguregui M. I., Alonso R. M. and Jimenez R. M. (1995)., High-performance liquid chromatography with amperometric detection applied to the screening of β-blockers in human urine., J Chromat B: Biomedical Sciences and Applications, 674, 85-91.
  53. Renata A., Eisele A. P. P., Serafim J. A., Lucilha A. C., Duarte E. H., Tarley C. R. T., Sartori E. R. and Dall, BiVO4-Bi2O3/ITO electrodes prepared by layer-by-layer: Application in the determination of atenolol in pharmaceutical formulations and urine., J Electroanal Chem., 765, 30-36.
  54. Lei X., Guo Q., Yu H., Huang J. and You T. (2012)., Simultaneous determination of three β-blockers at a carbon nanofiber paste electrode by capillary electrophoresis coupled with amperometric detection., Talanta, 97, 462-467.
  55. Huang J., Sun J., Zhou X. and You T. (2007)., Determination of atenolol and metoprolol by capillary electrophoresis with tris (2,2′-bipyridyl) ruthenium (II) electrochemiluminescence detection., Anal Sc., 23, 183-188.
  56. Wang Y., Wu Q., Cheng M. and Cai C. (2011)., Determination of β-blockers in pharmaceutical and human urine by capillary electrophoresis with electrochemilumine scence detection and studies on the pharmacokinetics., J Chromat B, 879, 871-877.
  57. Mojtaba S., Jalali F. and Haghgoo S. (2004)., Preparation of an atenolol ion‐selective electrode and its application to pharmaceutical analysis., Anal Let., 38, 401-410.
  58. Shalaby A., Abdulraheem A. I., El-Maamly M., Elshabrawy Y. and El-Tohamy M. (2008)., Polymeric membrane electrode for potentiometric determination of atenolol in tablets and biological fluids., Asian J Chem., 20, 3817-3827.