International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Influence of potassium hydrogen phthalate on thermal, mechanical, structural and surface properties of Chitosan/PVA blend films

Author Affiliations

  • 1P G Department of Studies in Chemistry, Karnatak University, Dharwad - 580 003, India
  • 2P G Department of Studies in Chemistry, Karnatak University, Dharwad - 580 003, India
  • 3P G Department of Studies in Chemistry, Karnatak University, Dharwad - 580 003, India
  • 4P G Department of Studies in Chemistry, Karnatak University, Dharwad - 580 003, India
  • 5P G Department of Studies in Chemistry, Karnatak University, Dharwad - 580 003, India
  • 6Department of Chemistry, Karnatak Science College, Dharwad - 580 001, India
  • 7P G Department of Studies in Chemistry, Karnatak University, Dharwad - 580 003, India

Res.J.chem.sci., Volume 11, Issue (1), Pages 15-24, February,18 (2021)


The Potassium hydrogen phthalate (KHP) doped Chitosan/Polyvinyl alcohol (CPK) blended films were prepared by solution casting technique. The different instrumental methods were utilized to investigate the influence of KHP on Chitosan/Polyvinyl alcohol blended films. The interaction and miscibility of prepared blend films were confirmed by Infrared Spectroscopy and Differential Scanning Calorimetry (DSC) analysis. The CPK blend films showed higher thermal stability than the Chitosan/Polyvinyl alcohol (CP) blend film. The mechanical properties of the CP blend films were improved after the addition of KHP. Increased amorphous nature of CPK blend films was observed through the X-ray diffraction (XRD) patterns. The surface roughness was analyzed by Atomic Force Microscopy (AFM) suggest that the KHP exists in the films owing to strong interactions. The hydrophobic nature of the CP blend was enhanced after the addition of KHP, which is verified by measuring the water contact angles. These investigated properties fitted with the properties which are applicable for the packaging and coating applications.


  1. Zhu, G., Wang, F., Gao, Q., & Liu, Y. (2013)., Modification of hydrophobic polypeptide-based film by blending with hydrophilic poly (acrylic acid)., Polímeros, 23(1), 24-28.
  2. Xiao, C., Lu, Y., Jing, Z., & Zhang, L. (2002)., Study on physical properties of blend films from gelatin and polyacrylamide solutions., Journal of applied polymer science, 83(5), 949-955.
  3. Wróblewska-Krepsztul, J., Rydzkowski, T., Borowski, G., Szczypiński, M., Klepka, T., & Thakur, V. K. (2018)., Recent progress in biodegradable polymers and nanocomposite-based packaging materials for sustainable environment., International Journal of Polymer Analysis and Characterization, 23(4), 383-395.
  4. Gupta, K. C., & Jabrail, F. H. (2006)., Glutaraldehyde and glyoxal cross-linked chitosan microspheres for controlled delivery of centchroman., Carbohydrate research, 341(6), 744-756.
  5. Rao M. S., Kanatt S. R. and Chawla S. P. (2010)., Chitosan and guar gum composite films: Preparation, physical, mechanical and antimicrobial properties., Carbohydrate Polymers, 82, 1243-1247.
  6. Chen, C. H., Wang, F. Y., Mao, C. F., Liao, W. T., & Hsieh, C. D. (2008)., Studies of chitosan: II. Preparation and characterization of chitosan/poly (vinyl alcohol)/gelatin ternary blend films., International Journal of Biological Macromolecules, 43(1), 37-42.
  7. Chao-Ming S., Yeong-Tarng S. and Yawo-Kuo T. (2009)., Preparation and characterization of cellulose/chitosan blend films., Carbohydrate Polymers, 78, 169-174.
  8. Wu, J., Zhong, F., Li, Y., Shoemaker, C. F., & Xia, W. (2013)., Preparation and characterization of pullulan-chitosan and pullulan-carboxymethyl chitosan blended films., Food Hydrocolloids, 30(1), 82-91.
  9. Rinaudc, M., Pavlov, G., & Desbrieres, J. (1999)., Solubilization of chitosan in strong acid medium., International Journal of Polymer Analysis and Characterization, 5(3), 267-276.
  10. Kweon, H., Ha, H. C., Um, I. C., & Park, Y. H. (2001)., Physical properties of silk fibroin/chitosan blend films., Journal of applied polymer science, 80(7), 928-934.
  11. Kubo, S., & Kadla, J. F. (2003)., The formation of strong intermolecular interactions in immiscible blends of poly (vinyl alcohol)(PVA) and lignin., Biomacromolecules, 4(3), 561-567.
  12. Tsukada, M., Freddi, G., & Crighton, J. S. (1994)., Structure and compatibility of poly (vinyl alcohol)‐silk fibroin (PVA/SA) blend films., Journal of Polymer Science Part B: Polymer Physics, 32(2), 243-248.
  13. Lee, Y. M., Nam, S. Y., & Kim, J. H. (1992)., Pervaporation of water-ethanol through poly (vinyl alcohol)/chitosan blend membrane., Polymer Bulletin, 29(3), 423-429.
  14. Silva, F. E., Leal, M. C. B. D. M., Batista, K. D. A., & Fernandes, K. F. (2013)., PVA/polysaccharides blended films: mechanical properties.,
  15. He, Z., & Xiong, L. (2012)., Evaluation of physical and biological properties of polyvinyl alcohol/chitosan blend films., Journal of Macromolecular Science, Part B, 51(9), 1705-1714.
  16. Chiellini, E., Cinelli, P., Imam, S. H., & Mao, L. (2001)., Composite films based on biorelated agro-industrial waste and poly (vinyl alcohol). Preparation and mechanical properties characterization., Biomacromolecules, 2(3), 1029-1037.
  17. Mohamed, M. B., & Abdel-Kader, M. H. (2020)., Effect of annealed ZnS nanoparticles on the structural and optical properties of PVA polymer nanocomposite., Materials Chemistry and Physics, 241, 122285.
  18. Parida, U. K., Nayak, A. K., Binhani, B. K., & Nayak, P. L. (2011)., Synthesis and characterization of chitosan-polyvinyl alcohol blended with cloisite 30B for controlled release of the anticancer drug curcumin., Journal of Biomaterials and Nanobiotechnology, 2(04), 414-425.
  19. Tellamekala S., Pravakar O., Neeruganti O. G., Velikanti R. K. and Chekuri R. (2018)., Structural, Optical and Thermal Characterizations of PVA/MAA:EA Polyblend Films., Materials Research., 21(5).
  20. Yumiko N., Yuezhen B., Mami B., Teruo N., Tsumuko O., Hiromichi K. and Masaru M. (2007)., Structure and Mechanical Properties of Chitosan/Poly(Vinyl Alcohol) Blend Films., Macromol. Symp., 25, 63-81.
  21. Orel B., Hadzi D. and Cabassi F. (1975)., Infrared and Raman spectra of potassium hydrogen phthalate., Spectroehimica Acta, 81A, 169-182.
  22. Punitha P., Senthilkumar S. and Parthiban S. (2015)., Influence of Cd(II) doping on the properties of potassium hydrogen phthalate (KHP) crystals., Int. J. Chem Tech Res., 7, 3171-3180.
  23. Mostak H., Shahanara B. and Jiban P. (2013)., Growth, structural, thermal and optical properties of Mg2+-Co2+ doped potassium acid phthalate crystals., Journal of Bangladesh Academy of Sciences, 37, 165-172.
  24. Hafez R. S. & El-Khiyami S. (2020)., Effect of copper (II) nitrate 3H2O on the crystalline, optical and electrical properties of poly (vinyl alcohol) films., Journal of Polymer Research, 27(26).
  25. M. Enculescu. (2010). Morphological and optical properties of doped potassium hydrogen phthalate crystals. Physica B., 405(17), 3722-3727., undefined, undefined
  26. Parul S., Garima M., Navendu G., Sanjeev K. S., Sanjay R. D., Subhash C. and Ashwani M. (2015)., Evaluating the potential of chitosan/poly(vinyl alcohol) membranes as alternative carrier material for proliferation of Vero cells., e-Polymers, 15(4), 237-243.
  27. Carlos A. G., Gonzalo V., Miguel C. G., Esmeralda R., Javier C. and Rocio Y. A. (2020)., Effect of polyvinyl alcohol on the physicochemical properties of biodegradable starch films., Materials Chemistry and Physics, 239, 122027.
  28. Godbole S., Gote S., Latkar M. and Chakrabarti T. (2003)., Preparation and characterization of biodegradable poly-3-hydroxybutyrate-starch blend films., Bioresource Technology, 86(1), 33-37.
  29. Shek Dhavud S. and Thomas Joseph Prakash J. (2017)., Influence of amino acid dopants on the growth and properties of potassium hydrogen phthalate single crystals for nonlinear optical applications., Int. J. Adv. Res., 5(2), 886-897.
  30. Suyatma, N. E., Copinet, A., Tighzert, L., & Coma, V. (2004)., Mechanical and barrier properties of biodegradable films made from chitosan and poly (lactic acid) blends., Journal of Polymers and the Environment, 12(1), 1-6.
  31. El Miri, N., Abdelouahdi, K., Zahouily, M., Fihri, A., Barakat, A., Solhy, A., & El Achaby, M. (2015)., Bio‐nanocomposite films based on cellulose nanocrystals filled polyvinyl alcohol/chitosan polymer blend., Journal of Applied Polymer Science, 132(22).
  32. Kailong J. and John M. T. (2015)., Tg and Tg breadth of poly (2,6-dimethyl-1,4-phenylene oxide)/polystyrene miscible polymer blends characterized by differential scanning calorimetry, ellipsometry, and fluorescence spectroscopy., Polymer, 65, 233-242.
  33. Manisara P., Ratana R. and Pitt S. (2003)., Characterisation of beta-chitin/poly(vinyl alcohol) blend films., Polymer Testing, 22(4), 381-387.
  34. Martínez-Camacho A. P., Cortez-Rocha M. O., Ezquerra-Brauer J. M., Graciano-Verdugo A. Z., Rodriguez-Felix F., Castillo-Ortega M. M., Yepiz-Gómez M. S. and Plascencia-Jatomea M. (2010)., Chitosan composite films: Thermal, structural, mechanical and antifungal properties., Carbohydrate Polymers, 82(2), 305-315.
  35. Kaya, M., Khadem, S., Cakmak, Y. S., Mujtaba, M., Ilk, S., Akyuz, L., ... & Deligoz, E. (2018)., Antioxidative and antimicrobial edible chitosan films blended with stem, leaf and seed extracts of Pistacia terebinthus for active food packaging., RSC advances, 8(8), 3941-3950.