International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Heavy metals uptake from polluted water by biosorption-an overall review

Author Affiliations

  • 1Ashoka Institute of Technology and management, Rajnandgaon CG, India

Res.J.chem.sci., Volume 10, Issue (1), Pages 48-51, February,18 (2020)


Heavy metals uptake from environment has been a matter for a long time. Conventional methods for the elimination of toxic metals has disadvantages such as high reagent requirement and generation of toxic sludge etc. Toxic substances may be resulting from metal plating, mining operations, sludge disposal, refining ores, pesticides, batteries. Hence, economic and eco-friendly techniques are requisite for water treatment. Biosorption is an affordable and effective technical process applied to eliminate pollutants from water. This technology is efficient cost effectual and sustainable technology. In this review paper investigate sorption technology for the sequestration of pollutants.


  1. Lasat M.M. (1999)., Phytoextraction of metals from contaminated soil: a review of plant/soil/metal interaction and assessment of pertinent agronomic issues., Journal of Hazardous Substance Research, 2(1), 5.
  2. Abdi O. and Kazemi M. (2015)., A review study of biosorption of heavy metals and comparison between different biosorbents., J Mater Environ Sci, 6(5), 1386-1399.
  3. Tangahu B.V., Abdullah S., Basri H., Idris M., Anuar N., and Mukhlisin M.A. (2011)., Review on heavy metals (As, Pb, Hg) uptake by plants through phytoremediation., Hindwari Publ Corp, Int J of Chem Engg., 1-31.
  4. Gaur A. and Adholeya A. (2004)., Prospects of arbuscular mycorrizal fungi in phytoremediation of heavy metal contaminated soils., Current Sci., 86, 528-534.
  5. Chopra A.K. and Pathak C. (2010)., Biosorption technology for removal of metallic pollutants-An overview., Journal of Applied and Natural Science, 2(2), 318-329.
  6. Gogate P.R. and Pandit A.B.A. (2004)., Review on imperative technologies for waste treatment II; hybrid method., Advance Enviro Res., 8, 553-591.
  7. Nagajyoti P.R., Lee K.D. and Sreekanth T.V.M. (2010)., Heavy metals, occurrence and toxicity for plants: A review., Enviro Ch Lett., 8(3), 199-216.
  8. Srivastava V.C., Swamy M.M., Male I.D., Prasad B. and Mishra I.M. (2006)., Adsorptive removal of phenol by pogasse fly ash and activated carbon: Equilibrium, kinetics and thermodynamics., Colloids and Surfaces A: Physicochem Engg Aspects., 272, 89-104.
  9. Hima K.A., Srinivasa R.R., Vijaya S.S., Jayakumar S.B., Suryanarayana V. and Venkateshwar P. (2007)., Biosorption: An eco-friendly alternative for heavy metal removal., African Journal of Biotechnology, 6(25), 2924-2931.
  10. Joshi N.C. (2017)., Heavy metals, conventional methods for heavy metal removal, biosorption and the development of low cost adsorbent., European J Pharm Medical Res., 4, 388-393.
  11. Joshi N.C. (2017)., Biosorption: A review on mechanism, kinetics and isotherms., European J Pharm Medical Res, 4, 422-426.
  12. Bhandari N.S., Joshi N.C. and Kumar S. (2011)., Sorption studies of Cu (II), Fe (II) and Zn (II) onto deodar leaves (Cedrus deodara)., Enviro Sci: An Indian J., 6, 75-79.
  13. Joshi N.C., Bhandari N.S. and Kumar S. (2011)., Biosorption of copper (II), iron (II) and zinc (II) from synthetic waste water using Banjh leaves as low cost adsorbent., Enviro Sci: An Indian, J., 6, 148-153.
  14. Bhandari N.S., Joshi N.C., Kumar S. and Shah G.C. (2012)., Study of Cu, Fe and Zn removal using Key Lime leaves (Citrus aurentifolia) as low cost Adsorbent., J Indian Chem Soc., 89, 383-387.
  15. Hammaini A., González F., Ballester A., Blázquez M.L. and Munoz J.A. (2003)., Simultaneous uptake of metals by activated sludge., Minerals Engineering, 16(8), 723-729..
  16. Norton N., Baskaran K. and Mekenzie T. (2004)., Biosorption of Zn from aqueous solution using biosolids., Adv Environ Res., 8, 629-635.
  17. Keskinkan O., Goksu M.Z.L., Yuceer A., Basibuyuk M.F. C.F. and Forster C.F. (2003)., Heavy metal adsorption characteristics of a submerged aquatic plant (Myriophyllum spicatum)., Process Biochemistry, 39(2), 179-183.
  18. Selvi K., Pattabhi S. and Kadir K. (2001)., Removal of Cr (VI) from aqueous solution by adsorption onto coconut tree sawdust., Bioresour Technol., 80, 87-89.
  19. Dakiky M., Khamis M., Manassra A. and Mereb M. (2002)., Selective adsorption of Cr(VI) in industrial waste-water using low cost abundantly available adsorbents., Adv Environ Res., 6(4), 533-540.
  20. Gadd G.M. (2009)., Biosorption: Critical review of scientific rationale, environmental importance and significance for pollution treatment., J Chem Technol Biotechnol., 84, 13-28.
  21. Vasu A.E. (2008)., Adsorption of Ni (II), Cu(II) and Fe(III) from aqueous solutions using activated carbon., E J Chem., 5, 1-9.
  22. Alam M., Aslam M. and Rais S. (2009)., Adsorption of Zn (II) and Ni (II) from aqueous solution using Syzygium aromaticum (cloves); Kinetic and isothermal studies., Rasayan J Chem., 2(4), 791-806.
  23. Gardea- Torresday J.L., Rosa G.D. and PeraltaVidea J.R. (2004)., Use of phytofiltration technologies in the removal of heavy metal, A review., Pure App Chem., 76(4), 801-813.
  24. Oboh O.I. and Aluyor E.O. (2008)., The removal of heavy metal ions from aqueous solutions using sour sop seed as biosorbents., African J Biotec., 7(24), 4508-4511.
  25. Devaprasth P.M., Solomon J.S. and Thomas B.V. (2007)., Removal of Cr(VI) from aqueous solution using natural plant material., J Appl Sci Environ Sanit., 2, 77-83.
  26. Gong R., Ding Y., Liu H., Chem Q. and Liu Z. (2005)., Lead biosorption and desorption by intact and pretreated Spirullina maxima biomass., Chemosphere., 58, 125-130.
  27. Rezae A., Derayat J., Martazavi S.B., Yamini Y. and Jafarzadeh M.T. (2005)., Removal of Hg from chloroalkali industry waste water using acetobacter xylinum, cellulose., Am J Environ Stud., 1(2), 102-105.
  28. Abdel-Ghani N.T., Hefny H. and EI-Chaghay G.A. (2007)., Removal of lead from aqueous solution using low cost abundantly available adsorbents., Int J Environ Sci Tech., 4, 67-73.
  29. Martins R.J., Pardo R. and Boaventura R.A. (2004)., Cadmium (II) and zinc (II) adsorption by the aquatic moss Fontinalis antipyretica: effect of temperature, pH and water hardness., Water Research, 38(3), 693-699.
  30. Asku Z. and Tezer S. (2000)., Equilibrium and kinetic modeling of biosorption of Remazol Black B by Rhizopus arrhizus in a batch system, effect of temperature., Process Biochem., 36, 431-439.
  31. Von Canstein H., Li Y., Timmis K.N., Deckwer W.D. and Wagner-Döbler I. (1999)., Removal of mercury from chloralkali electrolysis wastewater by a mercury-resistant Pseudomonas putida Strain., Appl. Environ. Microbiol., 65(12), 5279-5284.
  32. Janoš P., Sypecká J., Mlčkovská P., Kuráň P. and Pilařová V. (2007)., Removal of metal ions from aqueous solutions by sorption onto untreated low-rank coal (oxihumolite)., Separation and purification technology, 53(3), 322-329.
  33. Karthikeyan G. and Ilanga S.S. (2008)., Adsorption of Cr (VI) onto activated carbons prepared from indigenous materials., E J Chem., 5, 666-678.
  34. Madhavakrishnan S., Manickavasagam K., Rasappan K., Shabudeen P.S., Venkatesh R. and Pattabhi S. (2008)., Ricinus communis pericarp activated carbon used as an adsorbent for the removal of Ni (II) from aqueous solution., Journal of Chemistry, 5(4), 761-769.
  35. Ćurković L., Rastovčan-Mioč A., Majić M. and Župan J. (2011)., Application of different isotherm models on lead ions sorption onto electric furnace slag., The holistic approach to environment, 1(1), 13-18.
  36. Quinones I. and Guiochen G. (1996)., Application of different isotherm models to the description of single - component and competitive adsorption data., J Chromatogr., 734, 83-96.
  37. Devaprasth P.M., Solomon J.S. and Thomas B.V. (2007)., Removal of Cr(VI) from aqueous solution using natural plant material., J Appl Sci Environ Sanit., 2(3), 77-83.
  38. Abdelwalahs O. (2007)., Kinetic and isotherm studies of copper (II) ion removal from waste water using various adsorbents., Egyptian J Aquatic Res., 33, 125-143.
  39. Kiado A. and Budopest Khewer (2004)., Citation review of Langergren kinetic rate equation on adsorption reactions., Scientomet., 59, 171-177.
  40. Varma A.J., Deshpande S.V. and Kennedy J.F. (2004)., Metal complexation by chitosan and its derivatives: A review., Carbohydrate Polym., 55, 77-93.
  41. Wang J. and Chen C. (2006)., Biosorption of heavy metals by Sachhromyces cerevisiae: A review., Biotech Adv., 24(5), 427-451.