International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Preparation and Characterization of Supported Photocatalytic Composite and its Decomposition and Disinfection Effect on Bacteria in Municipal Sewage WaterS

Author Affiliations

  • 1Dept. of Environmental Science, Yuvaraja Collage, University of Mysore, Mysore, INDIA

Res.J.chem.sci., Volume 1, Issue (2), Pages 56-63, May,18 (2011)

Abstract

TiO2/CASB was prepared by straight forward mild hydrothermal processes. As prepared photocatalytic materials were characterized by powder X-ray diffraction (XRD), Scanning Electron Microcopy (SEM), Fourier Transform Infrared spectroscopy (FTIR), Positrons Annihilation Lifetime Spectroscopy (PALS) and Inductively Coupled Plasma Mass Spectroscopy (ICP-MS) to assess their physicochemical properties. Their photocatalytic decomposition and disinfection activity of bacteria in municipal sewage water was studied. The XRD studies reveal the presence of TiO in the form of anatase phase in the supported composite. The XRD studies further suggested that well crystalline form of TiO2 onto calcium alumino silicate beads (CASB) supports. FTIR results revealed the presence of Ti-O-Si linkages in the TiO2/CASB composite, which are responsible for its higher photocatalytic activity in the destruction of bacterial mass in the sewage water. TiO2 deposited CASB composite showed drastic reduction in the colony forming unit (CFU) of sewage water with UV light.

References

  1. Shivaraju H.P., Byrappa K., Shayan M.B., Rungnapa T., Pakamard S., Kumar M.S. Vijay and Ananda S., Hydrothermal coating of ZnO onto calcium alumino-silicate beads and their application in the photodegradation of amaranth dye, Mater. Rese. Innov.,14(1), 73-79 (2010)
  2. Sajan C.P., Shivaraju H.P., Lokanatha Rai K.M., Ananda S., Shayan M.B., Thonthai T., Narasshima Rao G.V., Byrappa K., Photocatalytic degradation of textile effluent using hydrothermal prepared Titania supported molybdenum oxide photocatalyst, Mater. Rese. Innov, 14(1), 89-94 (2010)
  3. Gao X., and Wachs I.E, Titania–silica as catalysts: molecular structural characteristics and physico-chemical properties, Cat. Today,51, 233-254 (1999)
  4. Nguyen V.C. and Nguyen T.V., Photocatalytic removal of phenol under natural sunlight over n-tio-sio catalyst: the effect of nitrogen composition in TiO-SiO2,Environ. Asia.,, 23-29 (2009)
  5. Mohammadi M.R., Rad A. Esmaeili and Fray D. J., Water-based sol–gel nanocrystalline barium titanate: controlling the crystal structure and phase transformation by Ba:Ti atomic ratio., J Mater. Sci.,44, 4959–4968 (2009)
  6. Sreethawong T., Suzuki Y., and Yoshikawa S., Synthesis, characterization, and photocatalytic activity for hydrogen evolution of nanocrystalline mesoporous Titania prepared by surfactant-assisted templating sol–gel process, J. Solid. State. Chem., 178(1), 329–338 (2005)
  7. Park D.J., Dong C.K., Jeong Y.L. and Hyung K. C., Synthesis and microstructural characterization of growth direction controlled ZnO nanorods using a buffer layer, Nanotech 17, 5238–5243 (2006)
  8. Sanjeev C. and Pierre F., Formation of solid splats during thermal spray deposition, J. Ther. Spray, Technol, 18, 148-180 (2009)
  9. Scharrer M., Wu X., Yamilov A., Cao H., Chang R.P.H., Fabrication of inverted opal ZnO photonic crystals by atomic layer deposition, Appl. Phys. Lett.86, 1-3, (2005)
  10. Wang L.J., Zhang M.H., Tao W. Li, K.Y., Effect of TiOsupport on the composition, morphology and catalytic property of the NiB amorphous alloy catalyst, Chine. Chem. Lett.,15(11) 1357-1360 (2004)
  11. Benjaram M.R., Komateedi N.R., Gunugunuri K. R., and Pankaj B., Characterization and catalytic activity of V/Al-TiO for selective oxidation of 4-methylanisole, J. Molecul. Cat. A: Chem., 253, 44–51 (2006)
  12. Shahmoradi B., Ibrahim I.A., Sakamoto N., Ananda S., Somashekar R., Guru Row T.N., Byrappa K., Photocatalytic treatment of municipal wastewater using modified neodymium doped TiO hybrid nanoparticles, J. Environ. Sci. Heal. Part: A.,45(10)1248–1255 (2010)
  13. Byrappa K., Sunitha M.H., Subramani A.K., Ananda S., Rai K.M.L., Basavalingu B., and Yoshimura M., Hydrothermal preparation of neodymium oxide coated Titania composite designer particulates and its application in the photocatalytic degradation of Procion Red dye, J. Mater. Sci., 41, 1369-1375 (2006)
  14. Huang Z., Maness P.C., Blake D.M., Wolfrum E.J., Smolinksi S.L., and Jacoby W.A., Bactericidal mode of titanium dioxide photocatalysis, J. Photochem. Photobiol:A.130, 163–170 (2000)
  15. Dong S.K. and Seung Y.K., Photocatalytic inactivation of E. coli with a mesoporous TiOcoated film using the film adhesion method, Environ. Sci. Techno., l43, 148-151 (2009)
  16. Yu H., Zhang K., and Rossi C., Experimental studyof thephotocatalyticdegradation of formaldehyde in indoorair using a nano- particulatetitanium dioxide photo catalyst, Indoor. Built. Environ.,16(6), 529-537 (2007)
  17. Daniel M.B., Pin-Ching M., Zheng H., Edward J.W., and Jie H., Application of the photocatalytic chemistry of titanium dioxide to disinfection and the killing of cancer cells, Separ. Purific. Methods, 28(1), 1-50 (1999)
  18. Matsunaga T., Tomodam R., Nakajima T., and Wake H., Photochemical sterilization of microbial cells by semiconductor powders, FEMS. Microbiol. Lett., 29, 211–214 (1985)
  19. Jean Y.C., Mallon P.E., and Schrader D.M., Principles and Applications of Positron and Positronium Chemistry, World Scientific Publishing. Singapore (2003)
  20. Nagaveni K., Hegde M.S., and Madras G., Structure and photocatalytic activity of Ti1-2±d (M= W, V, Ce, Zr, Fe and Cu) synthesized by solution combustion method, J. Phys. Chem:B.,108, 20204-20212 (2004)
  21. Brinker C. J., and G.W., Scherer Sol-gel science: the physics and chemistry of sol-gel processing. Academic Press, Boston, MA (1990)
  22. Evgeni A.S., Malkov A.A., and Malygin A.A., Hydrolytic stability of the Si–O–Ti bonds in the chemical assembly of Titania nanostructures on silica surfaces, Russ. Chem. Rev., 79, 907-917 (2010)
  23. Beck C., Mallat T., Buergi T., and Baiker A., Nature of active sites in sol-gel TiO-SiOepoxidation catalysts, J. Cat.204, 428-239 (2001)
  24. Klein S., Thorimbert S., and Maier W.F., Amorphous microporous titania–silica mixed oxides: preparation, characterization, and catalytic redox properties, J, Cat.163, 476-488 (1996)
  25. Dutoit D.C.M., Schneider M., and Baiker A., Titania-silica mixed oxides: I. influence of sol-gel and drying conditions on structural properties, J. Cat. 153, 165-176 (1995)
  26. Ireland J.C., Klostermann P., Rice E.W. and Clark R.M., Inactivation of Escherichia coli by titanium dioxide photocatalytic oxidation, Appl. Environ, Microbiol,59,1668–1670 (1993)
  27. Sjogren J.C. and Sierka R.A., Inactivation of phage MS by ironaided titanium dioxide photocatalysis, Appl. Environ. Microbiol., 60, 344–347 (1994)
  28. Watts R.J., Kong S., Orr M.P., Miller G.C., and Henry B.E., Photocatalytic inactivation of coliform bacteria and viruses in secondary wastewater effluent, Water. Res., 29, 95–100 (1995)