8th International Science Congress (ISC-2018).  International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Potassium doping effect on tungsten bronze KxWO3 structure

Author Affiliations

  • 1Research Group of Physical Chemical and Mineralogical Properties of Materials, Brazzaville, Congo and Faculty of Science and Technology (University Marien Ngouabi), Brazzaville, Congo
  • 2Research Group of Physical Chemical and Mineralogical Properties of Materials, Brazzaville, Congo, Faculty of Science and Technology (University Marien Ngouabi), Brazzaville, Congo and Center of Geological and Mining Research, Brazzaville, Congo

Res. J. Physical Sci., Volume 6, Issue (1), Pages 1-8, January,4 (2018)


The effect of potassium doping in cubic, hexagonal and monoclinical tungsten bronze KxWO3 structure has been studied experimentally and by the EAM method. For the experimental method WO3 was deposited in phase vapor deposition using reactive sputtering triode D.C method on the mica substrate. Embedded Atom Method (EAM) was used to discuss experimental results and to predict the effect of potassium content on nanorods crystallographic structure. The experimental results shows the nanorods obtained in the range of 3500C to 5500C with different size were observed at two directions in the potassium concentration zone. EAM analysis showed that potassium content has a significant effect both on the stability and crystallographic of nanorods structure. These results were found to be in agreement with other authors.


  1. Alban Mouanda Moussitou, Etude chromatographique en phase gazeuse des huiles appliquées sur les charpentes en bois à l’intérieur des habitations). Master dissertation, Université Marien Ngouabi, 2017, undefined, undefined
  2. Timothée Nsongo, Hilaire Elenga, Bernard Mabiala, David Bilembi and Ferland Ngoro (2016)., ELENGA, study of the pollution generated by engine oils applied on building woods to control termites., International Journal of Research in Environmental Science, 2(6), 12-18.
  3. Pinter Z. (2002)., Caractérisation de couches épaisses de semi-conducteur WO3 et WO3/TiO2 pour la réalisation de capteurs à NO2 (Doctoral dissertation, Lyon, INSA).,
  4. Bruyere S. (2010)., Structure et croissance de nanophases supportées d,
  5. Balázsi C., Wang L., Zayim E.O., Szilágyi I.M., Sedlacková K., Pfeifer J. and Gouma P.I. (2008)., Nanosize hexagonal tungsten oxide for gas sensing applications., Journal of the European Ceramic Society, 28(5), 913-917.
  6. Institut national de recherche et de sécurité (INRS), détecteurs portables de gaz et de vapeurs ; guide de bonnes pratiques pour le choix, l’utilisation et la vérification, février 2011 ;, undefined, undefined
  7. Dipero L.E, Ferroni M., Guidi V, Marca G., Martenelli G., Nelli P., Sangaletti L. and Sberveglieri G. (1996)., preparation and microstructure charactérisation of nanosized thin film of TiO2-WO3 as a novel material with hight sensibility towards NO2., sensors and actuators B ; chemical, 36, 381-383.
  8. Gillet M., Delamare R. and Gillet E. (2005)., Growth of epitaxial tungsten oxide nanorods., journal of Crystal Growth, 279, 93-99.
  9. Gillet M., Delamare R. and Gillet E. (2005)., Growth, structure and electrical properties of tungsten oxide nanorods., The European Physical Journal D-Atomic, Molecular, Optical and Plasma Physics, 34(1), 291-294.
  10. Daw M.S. and Baskes M.I. (1984)., Molecular dynamic simulation of glass formation in binary liquid metal: Cu–Ag using EAM., Phys.Rev.B, 29, 6443.
  11. Rose J.H., Smith J.R., Guinea F. and Ferrante J. (1984)., Universal features of the equation of state of metals., Physical Review B, 29(6), 2963.
  12. Finnis M.W. and Rühle M. (1993)., Structures of interfaces in crystalline solids., Materials Science and Technology, 1, 533.
  13. Gupta R.P. (1981)., Lattice relaxation at a metal surface., Physical Review B, 23(12), 6265.
  14. Hohenberg H. and Kohn W. (1964)., Inhomogeneous electron gaz., Phys.Rev.B, 136, 864.
  15. Stott M.J. and Zaremba E. (1980)., Quasiatoms: An approach to atoms in nonuniform electronic systems., Physical Review B, 22(4), 1564.
  16. Mohamed Benhamida (2014)., Propriétés structurale, élastiques et électronique d’alliages de nitrure des métaux de transitions., thèse, université de setif1.
  17. Akpata Erhieyowe and all (2014)., Surface energy calculation of low index group 1 alkali metals of the périodic table using the modified analytical EAM., IJRET, Aout.
  18. Xiao-Jian Y., Nan-Xian C. and Jiang S. (2012)., Construction of embedded-atom-method interatomic potentials for alkaline metals (Li, Na, and K) by lattice inversion., Chinese Physics B, 21(5), 053401.
  19. Lincoln R.C., Koliwad K.M. and Ghate P.B. (1967)., Morse-potential evaluation of second-and third-order elastic constants of some cubic metals., Physical Review, 157(3), 463.