A Renewal Risk Model with Dependence between Claim Sizes and Claim Intervals

T.M. Sajithamony¹ and K.K. Thampi²

¹Bharathiar University, Coimbatore, Tamilnadu, INDIA
²SNM College, Maliankara, Ernakulam, Kerala, INDIA

Available online at: www.isca.in, www.isca.me

Received 27th January 2015, revised 5th February 2015, accepted 9th March 2015

Abstract

This paper considers an application of probability to an insurance portfolio where the claim inter-arrival time depends on the previous claim size and follows Erlang (2) distribution. An explicit solution is derived for the crucial parameter of insurance companies, the probability of survival, using Laplace transform. The results are illustrated with examples.

Keywords: Survival probability, Laplace Transform, Dependent risk model, Erlang distribution.

Introduction

The classical and renewal risk models are widely investigated in recent times. But, most of them assume that the inter-arrival time between two successive claims and the claim amounts are independent. However, when modelling natural events, this assumption is very restrictive. To avoid this restriction, Albrecher and Boxma considered a model in which the distribution of inter-arrival time depends on previous claim size and was extended to a semi-Markovian risk model. In the study by Boudreault, Cossette, Landriault, and Marcoux, the time between two claims determines the distribution of the next claim size and follows Erlang (2) distribution. An explicit solution is derived for the crucial parameter of continuous fertility. Himanshu and Ashivani studied a probability model of dependent queueing model where the arrival rate depends on the inter-arrival time, premium size and claim size. Xie and Zou described a dependence model for the child mortality under the assumption that the families under consideration have one birth prior to the study. Kusum and Srivastava derived p.d.f of Inverse Maxwell distribution which is suitable for survival models. Meng, Zhang, and Guo considered a dependent setting where the time between two claims determines the distribution of the next claim size. Asimit and Badescu introduced a general dependence structure of heavy tailed claim sizes in the presence of a constant force of interest. Dhane studied a single server dependent queueing model where the arrival rate depends on time and service rate is constant. Hamid, Asghar and Mostafa studied the probability of occurrence of earthquakes in induced landslide based on slop, material, precipitation, fault data and weight composition using ArcGIS. Chen and Yuen constructed a dependent structure via the conditional distribution of the inter-arrival time given the subsequent claim size being large. Xie and Zou described a dependence model of inter-arrival time, premium size and claim size. Albrecher, Boxma, and Ivanovs extended the study by Kwan and H. Yang to a generalised risk model with phase type distribution.

Preliminaries

Consider a risk process where the claims occur as an ordinary renewal process. Let \(\{T_i\}_{i=1}^{\infty} \) be a sequence of strictly positive, independent and identically distributed random variables. \(T_i \) denotes the inter-arrival time between the \((i-1)\)th and \(i\)th claims. We assume \(T_i \) follows Erlang \((n, \lambda)\) distribution with probability distribution function.

\[
 k(t) = \frac{\lambda^n t^{n-1} e^{-\lambda t}}{(n-1)!} \quad \text{for } t > 0
\]

where \(n \) is a positive integer. In this paper, we illustrate ideas by restricting our attention to the case in which \(n=2 \). Let \(m_1 \) denote the mean of this distribution. Let \(\{X_i\}_{i=1}^{\infty} \) be a sequence of independent and identically distributed random variables where \(X_i \) denote the \(i\)th claim size. Let \(f(x) \) denotes the p.d.f, \(\mu \) the average and \(\overline{X}(s) \) the Laplace-Stieltjes transform (LST).

Consider the following surplus process \(U(t) \) of an insurance portfolio.

\[
 U(t) = u + ct - \sum_{k=1}^{N(t)} X_k
\]

where \(u > 0 \) is the initial surplus, \(c > 0 \) is the constant rate of premium, and \(N(t) \) is the number of claims up to time \(t \). Let us...
assume the following Markovian model for the claim occurrence process: if a claim size X_i is greater than a threshold A_i then the time until the next claim follows Erlang(2) distribution with parameter β_1, otherwise it follows an Erlang (2) distribution with another parameter β_2. The quantities A_i are assumed to be i.i.d random variable with distribution function $F(A)$.

The net profit condition is

$$\mu < 2c \left(\frac{P(X \geq A)}{\beta_1} + \frac{P(X < A)}{\beta_2} \right)$$

Let $T = \inf \{t > 0; U(t) = 0 \}$ be the time of ruin, $\Phi(u) = P(T = \inf \{t > 0; U(t) = 0 \})$ be the ultimate survival probability and $\Psi(u) = 1 - \Phi(u)$ be the ultimate ruin probability.

Theorem 2

The ultimate survival probability $\Phi_i(u)$ ($i = 1, 2$) satisfies the following differential equation

$$c^2 \frac{d}{du} \Phi_i(u) - c \beta_i \Phi_i(u) = -\frac{1}{c} \int_0^u \left(P(A \leq x) f(x) \Phi_i(u + x) + P(A > x) f(x) \Phi_i(u + x) \right) dx$$

Proof. By conditioning on the time and amount of the first claim and for $i=1$,

$$
\Phi_i(u) = \int_0^\infty \Phi_i(t) \frac{1}{t} \int_0^{u+ct} \left[P(A \leq x) f(x) \Phi_i(u + x) + P(A > x) f(x) \Phi_i(u + x) \right] dx dt
$$

Put $s = u + ct$

$$c \Phi_i(u) = \int_u^\infty \Phi_i \left(\frac{x-s}{c} \right) \left[P(A \leq x) f(x) \Phi_i(s-x) + P(A > x) f(x) \Phi_i(s-x) \right] d_s d_t$$

Differentiating with respect to u we get

$$c \frac{d}{du} \Phi_i(u) - \beta_i \Phi_i(u) = -\frac{1}{c} \int_0^\infty \beta_i e^{-\beta_i \frac{u+x}{c}} \left[P(A \leq x) f(x) \Phi_i(s-x) + P(A > x) f(x) \Phi_i(s-x) \right] d_s d_t$$

Similarly we can prove the result for $i=2$.

Theorem 2

Let $\Phi_i(s)$ be the Laplace transform of $\Phi_i(u)$ ($i = 1, 2$) and $\Re s \geq 0$. Define

$$\chi_i(s) = \int_0^\infty e^{-sx} A(x) f(x) dx$$

Then

$$c^2 \beta_i^2 \chi_i(s) \frac{d^2}{ds^2} \Phi_i(0) + c^2 \frac{d}{ds} \left[\frac{c^2 s^2 - 2c \beta_i s}{c^2 - 2c \beta_i} \right] \frac{d}{ds} \Phi_i(0)$$

$$+ \beta_i^2 \chi_i(s) \left(s^2 - 2c \beta_i s \right) \frac{d}{ds} \Phi_i(0)$$

$$= -s \Phi_i(0) + c \beta_i \Phi_i(0)$$

$$\Rightarrow\Phi_i(s) = \frac{c^2 s^2 - 2c \beta_i s}{c^2 - 2c \beta_i} \Phi_i(0) + \beta_i^2 \chi_i(s) \Phi_i(0)$$

Similarly for $i=2$

$$c^2 \frac{d^2}{ds^2} \Phi_2(0) + \left[c^2 s^2 - 2c \beta_2 s \right] \Phi_2(0)$$

$$= \beta_2 \chi_2(s) \left[c^2 s^2 - 2c \beta_2 s + \beta_2^2 \left(1 - \chi_2(s) \right) \right]$$

The result is obtained by solving the above simultaneous equations for $\Phi_1(s)$ and $\Phi_2(s)$.

Inversion of Laplace Transform

After getting the formula of $\Phi_1(s)$ and $\Phi_2(s)$ next we want to determine $\Phi_1(0)$ and $\Phi_2(0)$. Since $\lim_{s \to 0} \Phi_i(x) = 1$ we have $\lim_{s \to 0} \Phi_i(s) = 1; i=1, 2$.

Using the above result w.l.o.g in (2), we obtain...
Since \(r_1 \) is a zero of denominators of (2) and (3) it must also be a zero of the numerators, giving

\[
\begin{align*}
c^2\beta_1^2\chi_2'(s) & = \frac{d}{du}\phi_2(0) + c^2\left[c^2r_1^2 - 2\beta_2 cr_1 + \beta_1^2 \left(1 - \chi_2(r_1)\right)\right] \frac{d}{du}\phi_1(0) + \beta_1^2\chi_1'(r_1)\phi_2(0) [c^2r_1 - 2\beta_2 c] + \\
& \quad \left[c^2r_1^2 - 2\beta_2 cr_1 + \beta_1^2 \left(1 - \chi_2(r_1)\right)\right] \frac{d}{du}\phi_1(0) + \beta_1^2\chi_1'(r_1)\phi_2(0) [c^2r_1 - 2\beta_2 c] = 0
\end{align*}
\]

and

\[
\begin{align*}
c^2\beta_1^2\chi_2'(s) & = \frac{d}{du}\phi_2(0) + c^2\left[c^2r_2^2 - 2\beta_1 cr_1 + \beta_1^2 \left(1 - \chi_2(r_1)\right)\right] \frac{d}{du}\phi_1(0) + \beta_1^2\chi_1'(r_1)\phi_2(0) [c^2r_1 - 2\beta_2 c] + \\
& \quad \left[c^2r_1^2 - 2\beta_2 cr_1 + \beta_1^2 \left(1 - \chi_2(r_1)\right)\right] \frac{d}{du}\phi_1(0) + \beta_1^2\chi_1'(r_1)\phi_2(0) [c^2r_1 - 2\beta_2 c] = 0
\end{align*}
\]

Solving (5) and (6) we get

\[
\begin{align*}
\frac{d}{du}\phi_2(0) & = -\left[c^2r_1 - 2\beta_2 c\right] \frac{\phi_2(0)}{c^2} \quad (7) \\
\frac{d}{du}\phi_1(0) & = -\left[c^2r_1 - 2\beta_2 c\right] \frac{\phi_1(0)}{c^2} \quad (8)
\end{align*}
\]

Substituting in (4)

\[
\begin{align*}
\beta_1^2\beta_2^2\mu - 2c\beta_1^2\beta_2 P(x \leq A) - 2c\beta_2^2\beta_1 P(x > A) + \beta_1^2 P(x \leq A) c^2 r_1 \phi_2(0) + \beta_2^2 P(x > A)c^2 r_1 \phi_1(0) & = 0 \quad (9)
\end{align*}
\]

Then (2) and (3) becomes

\[
\begin{align*}
\tilde{\phi}(s) & = \frac{\beta_1^2\chi_2(0)\phi_2(0) [c^2s - c^2r_1] + \left[c^2s^2 - 2c^2\beta_2 cs + \beta_1^2 \left(1 - \chi_2(s)\right)\right] \phi_1(0) [c^2s - c^2r_1]}{\left[c^2s^2 - 2c^2\beta_2 cs + \beta_1^2 \left(1 - \chi_2(s)\right)\right] [c^2s^2 - 2c^2\beta_2 cs + \beta_1^2 \left(1 - \chi_2(s)\right)] - \beta_1^2\beta_2^2\chi_2(0)\chi_1(0)} \quad (10)
\end{align*}
\]

\[
\begin{align*}
\tilde{\phi}(s) & = \frac{\beta_1^2\chi_2(0)\phi_2(0) [c^2s - c^2r_1] + \left[c^2s^2 - 2c^2\beta_2 cs + \beta_1^2 \left(1 - \chi_2(s)\right)\right] \phi_1(0) [c^2s - c^2r_1]}{\left[c^2s^2 - 2c^2\beta_2 cs + \beta_1^2 \left(1 - \chi_2(s)\right)\right] [c^2s^2 - 2c^2\beta_2 cs + \beta_1^2 \left(1 - \chi_2(s)\right)] - \beta_1^2\beta_2^2\chi_2(0)\chi_1(0)} \quad (11)
\end{align*}
\]

Values of \(\Phi_1(0) \) and \(\Phi_2(0) \)

Now we need the value of \(\Phi_1(0) \) to substitute in equation (9) for getting the value of \(\Phi_2(0) \). The renewal risk process by Dickson becomes dependent risk model only when the claim size goes beyond a threshold \(A \). So we make an assumption that the initial claims are less than \(A \). Then we can adopt the formula of \(\Phi_1(0) \) by Dickson and Hippi.

\[
\Phi_1(0) = \frac{2b_1 c - \beta_1^2 \mu}{c^2 \phi_0} \quad (12)
\]

where \(\phi_0 \) is solution of the equation

\[
c^2s^2 - 2c^2\beta_2 cs + \beta_1^2 \left(1 - \chi\right) = 0
\]

Substituting in (9) we get the value of \(\phi_2(0) \).

On the other hand if the initial claims are larger than the threshold it becomes dependent model only when the claim size goes below the threshold \(A \). So we can adopt the above method for finding \(\Phi_i(0) \) using \(\beta_i \) in equation (12) and substitute in (9) to get the value of \(\Phi_i(0) \).

Calculation of Survival Probabilities

Equations (12) and (9) gives the values of \(\Phi_1(0) \) and \(\Phi_2(0) \). Substituting in equations (10) and (11) and inverting them gives the survival probabilities with initial surplus \(u \).

Example-1: For the special case let the initial claims occur according to Erlang(2) with parameter \(\beta \). Also let \(\text{X} \sim \text{Erlang}(2, 2), \text{A} \sim \text{Erlang}(2, 2) \), \(\beta_1 = 2, \beta_2 = 1, c = 2 \). The net profit condition is satisfied. Then by inverting the Laplace transforms and applying Lundberg’s inequality we get

\[
\Phi_1(x) = 1 - 0.0026 e^{-4.6661x} + 0.0444 e^{-2.4931x} - 0.3040 e^{-1.1182x}
\]

\[
\Phi_2(x) = 1 - 0.0006 e^{-4.6661x} + 0.0151 e^{-2.4931x} - 0.1302 e^{-1.1182x}
\]

Example-2: In the above example let us assume the initial claims occur according to Erlang (2) with parameter \(\beta_2 \). Then the result becomes

\[
\Phi_1(x) = 1 + 0.0138 e^{-4.6661x} + 0.0517 e^{-2.4931x} - 0.3734 e^{-1.1182x}
\]
Conclusion

Figure 1 shows the results of example 1 and 2. We made the above assumption on the distribution of initial claims because of its analytical tractability. So we can use the very same method for finding the values of ruin and survival probabilities of dependent risk model when the distribution is Erlang.

\[\varphi_2(x) = 1 + 0.0042e^{-4.661x} + 0.0175e^{-2.4931x} - 0.1599e^{-1.1182x} \]

References