ON Q-Fuzzy Ideal and Q-Fuzzy Quotient Near-Rings

Bhimraj Basumary and Gopi Kanta Barthakur

1Research Scholar, Department of Mathematical Sciences, Bodoland University, Kokrajhar, Assam, INDIA
2Department of Mathematics, G. K. B. College, Morigaon, Assam, INDIA

Available online at: www.isca.in, www.isca.me

ISSN 2320–6047

Res. J. Mathematical and Statistical Sci.

Vol. 2(7), 4-6, July (2014)

Abstract

In this paper, we shall study Q-fuzzy ideal and Q-fuzzy quotient near-ring and investigate some of there properties and we prove some characterizations of a near-ring in terms of Q-fuzzy quotient near-ring and Q-fuzzy ideal.

Keywords: Q-fuzzy ideal, Q-fuzzy quotient near-ring.

Introduction

Zadeh introduced fuzzy set in 1965. The idea of the fuzzy ideal in near-ring is discussed by Zaid. Solarairaju et al. introduce the new structures of Q-fuzzy groups. On the other hand Muhammad Akram introduces the 'T-fuzzy Ideals and quotient near-ring. In this paper, we shall study quotient near-rings via Q-fuzzy ideals and study some of their properties. Generally in this work we follow a paper published by Muhammad Akram to prove theorems.

Preliminaries

Definition: A near-ring is a set R which is non empty with two binary operation “+” and “.” Which holds the conditions, (R, +) is group, (R, .) is semi group, and multiplicative is distributive with respect to addition.

Definition: Let us consider a non empty set A. Then a function µ : R → [0, 1] is called Q-level in A. For t in [0, 1] the set µt = { x | µ(x) ≥ t } is called Q-level subset of A.

Definition: A function µ : G×Q→[0, 1] is called Q-fuzzy set in G, where Q be a set and G be group respectively.

Definition: Consider a function f from a set A to B and a Q-fuzzy set µ in A. Then µ is a Q-fuzzy subset of B defined by

f(µ)(y, q) = \begin{cases} \sup_{x \in f^{-1}(y)} \mu(x, q) : f^{-1}(y) \neq \emptyset \\ 0 : otherwise \end{cases}

Definition: Let Im(λ) denote the image set of λ. Let λ be a Q-fuzzy set in a set R. For t in [0, 1] the set λt = { x | xR, q∈Q; λ(x, Q) ≥ t } is called Q-level subset of λ.

Definition: Consider µ a Q-fuzzy set in a near-ring R, then µ is Q-fuzzy sub near-ring of R if it holds the conditions

1. µ(x–y, q) ≥ µ(x, q)
2. µ(xy, q) ≥ µ(y, q)
3. µ((x+z)y–xy, q) ≥ µ(z, q)

Definition: A Q-fuzzy subnear-ring µ in R is called Q-fuzzy ideal if

1. µ(x+y, q) ≥ µ(x, q)
2. µ(xy, q) ≥ µ(y, q)
3. µ((x+z)y–xy, q) ≥ µ(z, q)

Theorem: If we consider a onto homomorphism f : A → B of near-rings, Consider µ be a Q- fuzzy ideal in A, we get, then a Q- fuzzy ideal (f(µ)) in B.

Proof: Consider v, w be two elements in the set B. Since f is onto homomorphism, then as Muhammad Akram we are clear to show

{ b – c | b, c ∈ (v), c ∈ (w) } is subset of { x | x f (v–w) }.

Now as definition 1.9 of f(µ)(x, q) we have

f(µ)(v–w, q) = \sup_{x \in f^{-1}(v–w)} \mu(x, q)

≥ \sup_{b \in f^{-1}(v)} \mu(b – c, q)

≥ \min \{ \sup_{b \in f^{-1}(v)} \mu(b, q), \sup_{c \in f^{-1}(w)} \mu(c, q) \}

= \min \{ f(µ)(v, q), f(µ)(w, q) \}

Now following definition 1.9

f(µ)(vw, q) = \sup_{x \in f^{-1}(vw)} \mu(x, q)

≥ \sup_{b \in f^{-1}(v)} \mu(bc, q)

≥ \min \{ \sup_{b \in f^{-1}(v)} \mu(b, q), \sup_{c \in f^{-1}(w)} \mu(c, q) \}

f(µ) is Q-fuzzy sub near-ring.

Now also we have

f(µ)(v+w–v, q) = \sup_{x \in f^{-1}(v+w–v)} \mu(x, q)
Consider (x+A), (y+A) be two elements of R/A, now following definition 2.4 and from definition 2.6 we are clear to show
Ψ((x+A), q) = sup_{x \in R/A} \mu(x, q) is a \emph{Q-fuzzy} 3 ideal 6 of R/A.

Since, we have \mu(0, q) = \mu(s, q).

Also from definition 2.12 \mu(a+s, q) \geq \mu(a, q).

Thus, we have \mu(a+s, q) = \mu(a, q), for all s \in A.

Then, we have \mu(a+s, q) = \mu(a, q), for all s \in A.

Hence the corresponding \mu \mapsto \Psi is one to one.

Let \Psi be \emph{Q-fuzzy} 3 ideal 6 of R/A. Consider \mu as a \emph{Q-fuzzy} 3 set in R so that for all “a” in A \mu(a, q) is equal to \Psi(a+A, q).

Now, for x, y \in R, we have from definition 2.6 and from theorems 3.1 and 3.2 it follows
\mu(x, y, q) = \Psi((xy)+A, q)
= \Psi((x+\Lambda)-(y+A), q)
\geq \min \{ \Psi((x+A), q), \Psi((y+A), q) \}
= \min \{ \Psi((x+\Lambda)-(y+\Lambda), q) \}

Thus \mu is \emph{Q-fuzzy} 3 ideal 6 of R. Clearly \mu(a, q) is equal to \Psi(a+A, q) which equal to \Psi(A, q), for all a in A. This indicates that \mu(0, q) is equal to \mu(s, q) for all s \in A.

\textbf{Theorem 3.4} Let us consider A be an \emph{ideal} 6 of a near-ring 5 R.

We can have then a \emph{Q-fuzzy} 3 ideal 6 of R so that \mu(0, a) is t and \lambda 3 is called Q-level 1 subset of \lambda.

\textbf{Proof:} Following definition 2.6 and theorems 3.1, 3.2, 3.3 the proof is straight forward 2.

\textbf{Theorem 3.5} Consider a \emph{Q-fuzzy} 3 ideal 6 \mu of a near-ring 5 R also \mu(0, a) is t.

Then \Psi is a \emph{Q-fuzzy} 3 ideal 6 of R/\lambda 3, where \Psi is constructed as \Psi(x+\lambda 3, q) = \mu(x, q) for all x \in R and \lambda 3 is called Q-level 1 subset of \lambda.

\textbf{Proof:} Similarly following definition 2.6 and theorems 3.1, 3.2, 3.3 and 3.4 proof is straight forward 3.

\textbf{Conclusion}

In this paper, we have defined Q-fuzzy subnear-ring, Q-fuzzy ideal. With the help of Q-fuzzy subnear-ring and Q-fuzzy ideal, we have discussed on Q-fuzzy quotient near-ring and proved some theorems on Q-fuzzy quotient near-ring. We hope that this work will help for further work of fuzzy set.

\textbf{References}