Integral Equations To Non-Riemann Cases

Seal Babulal
Department of Statistics, Burdwan University, Burdwan, W.B., INDIA

Available online at: www.isca.in
Received 31st July 2013, revised 3rd August 2013, accepted 10th August 2013

Abstract
The linear or nonlinear equations are important in many cases of stochastic process viz, renewal equations, age dependent branching process etc. There is a standard theory of linear integral equations. Here the technique is generalised and modified under different set ups. Generalisations are considered in three different cases: i. Integration is Riemann-Stieltjes integration with respect to an integrator of bounded variation, ii. integration w.r.t. step function integrator and iii. integration on any probability space or measure space.

Keywords: Non-Riemann integral equation, Fredholm integral equation of second kind, Riemann-Stieltjes integration, step function, bounded variation function, measure space.

Introduction
Integral equations come in many stochastic processes\(^1\). As linear integral equations have been studied extensively by others, we have not discussed those things, but we have generalised some of the results where the set up of the equations are different\(^2\). In fact the author tried to solve many nonlinear integral equations analytically and then those techniques are attempted to generalise. Such works are important in stochastic processes for solving many integral equations\(^3\). Also nonlinear integral equations are discussed in literature\(^4\). Motivated from this, other set ups for example, type of integration and integrator have been attempted. Three different cases: i. Integration is Riemann-Stieltjes integration with respect to an integrator of bounded variation, ii. integration w.r.t. step function integrator and iii. integration on any probability space or measure space are described and investigated. For general type of functional equation one may look at Evans\(^5\). One may use some tools for applications from literature\(^6\). One important reference in stochastic processes is Ross\(^7\). Another from application point of view is Ross\(^8\).

The solutions and conditions in the above mentioned three cases are obtained. Let us consider the following equation as in (1)

\[
\phi(x) = F(x) + \lambda \int_a^b K(x, \xi) \phi(\xi) d\xi
\]

where \(g(.) \) is any function of bounded variation

Definition 1.1 (Apostol) A function \(g(\cdot) \) is called a bounded variation on \([a, b] \) if for any partition \(P : a = x_0 < x_1 < \cdots < x_n = b \) we have

\[
\sup_P \sum_{i=1}^n |g(x_i) - g(x_{i-1})| \text{ is bounded}^9.
\]

\[
\phi(x) = F(x) + \lambda \int_a^b K(x, \xi) \phi(\xi) dG(\xi) \text{ as in (2)}
\]

where \(G(.) \) is a step function and discontinuity at \(c_1, c_2, \cdots, c_n \in (a, b) \)

\[
\phi(x) = F(x) + \lambda \int_X K(x, \xi) \phi(\xi) d\mu(\xi) \text{ as in (3)}
\]

where \(\mu \) is a finite measure on the sample space \((X, \Gamma) \).

These are considered in sections 2, 3 and 4. Then the solutions are obtained in each case. Some examples are also worked out.
Solution of Integral Equation in Riemann-Stieltjes Function

Let us consider (1.1) in Riemann-Stieltjes sense and we replace the integral by approximation sum as

\[F(x) = \phi(x) - \lambda \sum_{j=1}^{n-1} K(x, \xi_j) \phi(\xi_j) [g(\xi_{j+1}) - g(\xi_j)] \]

(2.1)

where \(\xi_1 < \xi_2 < \cdots < \xi_n \) are partitioning points of \([a, b]\)

Hence we get

\[
\begin{align*}
F(\xi_i) &= \phi(\xi_i) - \lambda \sum_{j=1}^{n-1} K(\xi_i, \xi_j) \phi(\xi_j) [g(\xi_{j+1}) - g(\xi_j)] \\
&= \{1 - \lambda k_{i1} g_{21} + \lambda k_{i2} g_{32} - \cdots - \lambda k_{in} g_{n+1,n}\} + \lambda \sum_{j=1}^{n-1} K(\xi_i, \xi_j) \phi(\xi_j) [g(\xi_{j+1}) - g(\xi_j)]
\end{align*}
\]

(2.2)

Similar expressions at \(\xi_2, \xi_3, \cdots, \xi_{n-1} \)

Proceeding like this for others we have \(n \) similar equations.

In order to have a unique solution the coefficient matrix must be non-singular i.e.,

\[
D_n(\lambda) = \begin{bmatrix}
-\lambda k_{11} g_{11} & -\lambda k_{12} g_{21} & \cdots & -\lambda k_{1n} g_{n+1,n} \\
-\lambda k_{21} g_{21} & -\lambda k_{22} g_{22} & \cdots & -\lambda k_{2n} g_{n+1,n} \\
\vdots & \vdots & \ddots & \vdots \\
-\lambda k_{n1} g_{21} & -\lambda k_{n2} g_{32} & \cdots & -\lambda k_{nn} g_{n+1,n}
\end{bmatrix}
\]

where \(g_{ij} = g(\xi_i) - g(\xi_j) \) & \(k_{ij} = K(\xi_i, \xi_j) \), must be non-singular.

Now \(\det(D_n(\lambda)) = 1 - \lambda \sum_{j=1}^{n-1} K_{ji} g_{i+1,j} + \frac{(-\lambda)^2}{2!} \sum_{j=1}^{n-1} \sum_{r=1}^{n-1} k_{i+j} g_{i+1,j} + \frac{(-\lambda)^2}{3!} \cdots \)

Now taking limit as \(n \to \infty \) and finer partition we have \(\lim_{n \to \infty} \det(D_n(\lambda)) = D(\lambda) \)

In order to have solution of (2.2) we must have \(D(\lambda) \neq 0 \). Then the solution becomes,

Theorem 2.1. The solution in the previous case is given by \(\phi(x) = F(x) + \lambda \int_a^b R(x, \xi, \lambda) F(\xi) d\xi \)

where \(R(x, \xi, \lambda) = \frac{D(x, \xi, \lambda)}{D(\lambda)} \)

(\& \ D(x, \xi, \lambda) = B(x, \xi) + \sum_{j=1}^{n-1} (-1)^j \frac{\lambda^j}{j!} B(x, \xi) & B(x, \xi) = \int_x^\xi \int_x^{\xi_1} \cdots \int_x^{\xi_{n-1}} K(x, \xi_1, \cdots, \xi_n) d\xi_1 \cdots d\xi_{n-1} \)

\[
D(\lambda) = 1 - \sum_{j=1}^{n-1} (-1)^j \frac{\lambda^j}{j!} \int_x^\xi \int_x^{\xi_1} \cdots \int_x^{\xi_{n-1}} K(x, \xi_1, \cdots, \xi_n) d\xi_1 \cdots d\xi_n
\]

where \(K(x, \xi) = \begin{bmatrix} K(x, \xi) & K(x, \xi) & \cdots & K(x, \xi) \\
K(\xi, \xi_1) & K(\xi_1, \xi_1) & \cdots & K(\xi_1, \xi) \\
\vdots & \vdots & \ddots & \vdots \\
K(\xi_n, \xi_n) & K(\xi_n, \xi_{n-1}) & \cdots & K(\xi_n, \xi) \end{bmatrix} \)

Proof: We take

\[
R(x, \xi, \lambda) = K_1(x, \xi) + \lambda K_2(x, \xi) + \lambda^2 K_3(x, \xi) + \cdots \text{ and so on}
\]

\[
= K(x, \xi) + \lambda \int K(x, \xi) R(\xi, \xi, \lambda) d\xi
\]
Now let us write \(D(x, \xi; \lambda) = R(x, \xi; \lambda)D(\lambda) \)

Then putting this into previous expression we get
\[
\frac{D(x, \xi; \lambda)}{D(\lambda)} = K(x, \xi) + \lambda \int K(x, \xi) \frac{D(\xi, \xi; \lambda)}{D(\lambda)} d(\xi)
\]

\[
\Rightarrow D(x, \xi; \lambda) = D(\lambda)K(x, \xi) + \lambda \int K(x, \xi)D(\xi, \xi; \lambda)d(\xi)
\]

(2.3)

As we know \(D(\lambda) = 1 + \sum \frac{(-1)^i}{i!} P_i \) & \(P_i = \int \cdots \int K\left(\xi_1, \xi_2, \ldots, \xi_i\right)d(\xi_i)\cdots d(\xi_1) \)

Putting \(\lambda = 0 \) as it is valid range because \(D(0) = 1 \neq 0 \) \(D(x, \xi; 0) = K(x, \xi) \)

By previous argument the solution will be of the form
\[
D(x, \xi; \lambda) = B_0(x, \xi; \lambda) + \sum \frac{(-1)^i}{i!} B_i(x, \xi)
\]

(2.4)

Putting (2.4) in (2.3) we get
\[
\left(1 + \sum \frac{(-1)^i}{i!} P_i\right)K(x, \xi) + \lambda \int \left(B_0(\xi, \xi; \lambda) + \sum \frac{(-1)^i}{i!} B_i(\xi, \xi)\right)d(\xi)
\]

\[
= B_0(x, \xi; \lambda) + \sum \frac{(-1)^i}{i!} B_i(x, \xi)
\]

Now successively collecting coefficient of \(\lambda^i \) we have
\[
K(x, \xi)P_i = B_i(x, \xi) - i \int K(x, \xi)B_{i-1}(\xi, \xi)d(\xi)
\]

\[
\Rightarrow B_i(x, \xi) = K(x, \xi)P_i - \int K(x, \xi)B_0(\xi, \xi)d(\xi) = K(x, \xi)\int K(\xi_1, \xi_1)d(\xi_1) - \int K(x, \xi)B_0(\xi, \xi)d(\xi)
\]

\[
= \int \begin{pmatrix} K(x, \xi) \\ K(\xi_1, \xi) \\ K(\xi_1, \xi) \end{pmatrix} d(\xi_1) \text{ similarly for other } B_i(x, \xi).
\]

Solution of integral equation with step function integrator

Now we consider equation (1.2) i.e., the integral equation when the integrator function \(g(\cdot) \) is discontinuous at \(y_1, y_2, \ldots, y_k \).

Then we know that the Riemann-Stieltjes integral becomes (Apostol, 1973)
\[
\int_a^b K(x, \xi)\phi(y)d\gamma(y) = \sum K(k, y_i)\phi(y_i)\alpha_i
\]

(3.1)

where
\[
\phi(x) = F(x) + \lambda \sum \alpha_i K(x, y_i)\phi(y_i)\alpha_i, \forall x
\]

Now putting \(y_1, y_2, \ldots, y_k \) in both sides in the above we have \(k \) equations like (3.1).

Above system of equations can be rewritten as
\[
F(y_1) = (1 - \lambda K(y_1, y_1)\alpha_1)\phi(y_1) - \lambda K(y_1, y_2)\alpha_2\phi(y_2) - \cdots - \lambda K(y_1, y_k)\alpha_k\phi(y_k)
\]
\[
F(y_2) = -\lambda K(y_2, y_2)\alpha_2\phi(y_2) + (1 - \lambda K(y_2, y_1)\alpha_1)\phi(y_1) - \cdots - \lambda K(y_2, y_k)\alpha_k\phi(y_k)
\]
\[
F(y_k) = -\lambda K(y_k, y_k)\alpha_k\phi(y_k) - \cdots - \lambda K(y_k, y_{k-1})\alpha_{k-1}\phi(y_{k-1}) + (1 - \lambda K(y_k, y_k)\alpha_k)\phi(y_k)
\]

(3.2)
Now in order to solve the above system of equations (3.2) we must have

\[
D(\lambda) = \begin{bmatrix}
1 - \lambda K(y_1, y_1)\alpha_1 & -\lambda K(y_1, y_2)\alpha_2 & \cdots & -\lambda K(y_1, y_n)\alpha_n \\
-\lambda K(y_2, y_1)\alpha_1 & 1 - \lambda K(y_2, y_2)\alpha_2 & \cdots & -\lambda K(y_2, y_n)\alpha_n \\
\vdots & \vdots & \ddots & \vdots \\
-\lambda K(y_n, y_1)\alpha_1 & -\lambda K(y_n, y_2)\alpha_2 & \cdots & 1 - \lambda K(y_n, y_n)\alpha_n
\end{bmatrix}
\]

must be non-singular.

Now \[\det(D(\lambda)) = 1 - \lambda \sum_{i=1}^{n} K(y_i, y_i)\alpha_i + \frac{(-\lambda)^2}{2!} \sum_{i,j} K(y_i, y_i)\alpha_i K(y_j, y_j)\alpha_j + \cdots \]

\[= 1 - \lambda \sum_{i=1}^{n} K(y_i, y_i)\alpha_i + \frac{(-\lambda)^2}{2!} \sum_{i,j} \alpha_i \alpha_j \begin{vmatrix}
K(y_i, y_i) & K(y_j, y_j) \\
K(y_j, y_i) & K(y_j, y_j)
\end{vmatrix} + \cdots \text{and so on} \quad (3.3)
\]

Let us take special case when \(g(x)\) has only one discontinuity points at \(x = c\) then \(D(\lambda) = 1 - \lambda K(c, c)\alpha\)

where \(\alpha\) is amount of jump of \(g\) at \(x = c\).

\[\Rightarrow \lambda \neq \frac{1}{K(c, c)\alpha}\]

in order to have solution and the solution is given by

\[\phi(x) = F(x) + \int_{a}^{b} R(x, \xi, \lambda) F(\xi) d\xi\]

where

\[R(x, \xi, \lambda) = \frac{D(x, \xi; \lambda)}{D(\lambda)} \quad \text{and} \quad D(x, \xi; \lambda) = K(x, \xi) + \sum_{n=1}^{\infty} \frac{(-\lambda)^{n}}{n!} \int_{a}^{b} \cdots \int_{a}^{b} K\left(\xi, \xi_1, \cdots, \xi_n\right) d\xi_1 \cdots d\xi_n\]

by theorem 2.1.

In this case we must have \(\alpha_1 = \alpha, \alpha_2 = \alpha, \cdots = \alpha_n \Rightarrow \lambda \neq \frac{1}{\alpha K(c, c)}\)

In the following we shall workout an example

Example 1. Let us take \(K(x, \xi) = xe^\xi, \ a = 0, \ b = 1\)

Then \[K\left(\begin{array}{c}
x \\
\xi \\
\xi_1 \\
\xi_2 \\
\xi_3
\end{array}\right) = \left[\begin{array}{c}
K(x, \xi) & K(x, \xi_1) & \cdots & K(x, \xi_n) \\
K(\xi, \xi) & K(\xi, \xi_1) & \cdots & K(\xi, \xi_n) \\
\vdots & \vdots & \ddots & \vdots \\
K(\xi_n, \xi) & K(\xi_n, \xi_1) & \cdots & K(\xi_n, \xi_n)
\end{array}\right] = \left[\begin{array}{c}
x e^\xi \\
x e^{\xi_1} \\
xe^{\xi_2} \\
x e^{\xi_3}
\end{array}\right]
\]

\[= x\xi_1 e^{\xi_1} - x\xi_1 e^{\xi_1} = 0 \Rightarrow \int \left[\begin{array}{c}
K(x, \xi) & K(x, \xi_1) \\
K(\xi, \xi_1) & K(\xi, \xi_1)
\end{array}\right] d\xi_1 = 0\]

and other higher order determinants must be zero.

Now we see using theorem 3.1 that

\[B_{ij}(x, \xi; \lambda) = K(x, \xi)\]

\[\Rightarrow D(x, \xi; \lambda) = K(x, \xi)\]

\[\Rightarrow R(x, \xi; \lambda) = \frac{K(x, \xi)}{D(\lambda)}\]

\[\Rightarrow D(x, \xi; \lambda) = K(x, \xi) = xe^\xi\]
\[R(x, \xi; \lambda) = \frac{xe^\xi}{1 - \lambda K(c, c)\alpha} \]

For \(\lambda = 1 \)

\[R(x, \xi) = \frac{xe^\xi}{1 - K(c, c)\alpha} \]

and the solution is given by

\[\varphi(x) = F(x) + \int_0^1 \frac{xe^\xi}{1 - K(c, c)\alpha} F(\xi) d\xi \]

\[= F(x) + \frac{xe^\xi}{1 - K(c, c)\alpha} F(c) \alpha \text{ is a solution} \]

Compact form of solution: Now let us take \(\varphi(x) = F(x) + \lambda \int_0^b K(x, \xi)\phi(\xi)d\xi \)

where \(y_1, y_2, \ldots, y_k \) are the points of discontinuity of \(g(\cdot) \).

So above becomes \(\phi(x) = F(x) + \lambda \sum_{i=1}^k K(x, y_i)\phi(y_i)\alpha_i \)

Let us try with \(\phi(x) = \phi_0(x) + \lambda \phi_1(x) + \lambda^2 \phi_2(x) + \cdots \)

Then \(\phi_0(x) + \lambda \phi_1(x) + \lambda^2 \phi_2(x) + \cdots = F(x) + \lambda \sum_{i=1}^k K(x, y_i)\left[\phi_0(y_i) + \lambda \phi_1(y_i) + \lambda^2 \phi_2(y_i) + \cdots \right] \alpha_i \)

\[\Rightarrow \phi_i(x) = F(x) \]

\[\phi_1(x) = \sum_{i=1}^k K(x, y_i)\phi_0(y_i)\alpha_i = \sum_{i=1}^k K(x, y_i)F(y_i)\alpha_i \]

\[\phi_2(x) = \sum_{i=1}^k K(x, y_i)\phi_1(y_i)\alpha_i = \sum_{i=1}^k \left[\sum_{j=1}^i K(x, y_j)K(y_j, y_i)\alpha_j \right] F(y_i)\alpha_j = \sum_{j=1}^{k-1} K_2(x, y_j)F(y_j)\alpha_j \]

\[\phi_n(x) = \sum_{i=1}^k K(x, y_i)\phi_{n-1}(y_i)\alpha_i = \sum_{j=1}^{k-1} K_n(x, y_j)F(y_j)\alpha_j \]

where \(K_2(x, y_j) = \sum_{i=1}^k K(x, y_i)K(y_i, y_j)\alpha_i \), \(K_3(x, y_j) = \sum_{i=1}^k K(x, y_i)K_2(y_i, y_j)\alpha_i \), \(K_n(x, y_j) = \sum_{i=1}^k K(x, y_i)K_{n-1}(y_i, y_j)\alpha_i \)

These are successive iterated kernels.

Now consider the series \(R(x, \xi; \lambda) = \sum_{n=0}^\infty \lambda^n K_{n+1}(x, \xi) \)

Then solution becomes as in the following \(\phi(x) = \sum_{i=0}^\infty \lambda^i \phi_i(x) = F(x) + \lambda \sum_{i=0}^\infty \lambda^i \phi_i(x) = F(x) + \lambda \sum_{i=0}^\infty \left(\sum_{j=1}^{k} K_{i+1}(x, y_j)F(y_j)\alpha_j \right) \)
Solution of integral equation in measure theoretic set up

Now let us consider the last case: Here we partition the sample space into \(A_1, A_2, \ldots, A_n \) s.t.

\[
\phi(x) - \lambda \sum_{i=1}^{n} K(x, \xi_i) \phi(\xi_i) \mu(A_i) = F(x) \quad (4.1)
\]

where \(\xi_i \in A_i \).

The above expression approximation can be done up to any desired level because we know that for bounded functions and finite measure integrals are approximated in this way.

It is known that this can be done uniformly over \(x \) and the set on which function is defined, is a compact set and the \(\sigma \)-field is compatible with the topological structure. Then we have the following system of equation

\[
\begin{bmatrix}
1 - \lambda k_{11} \mu(A_1) & -\lambda k_{12} \mu(A_2) & \cdots & -\lambda k_{1n} \mu(A_n) \\
-\lambda k_{21} \mu(A_1) & 1 - \lambda k_{22} \mu(A_2) & \cdots & -\lambda k_{2n} \mu(A_n) \\
\vdots & \vdots & \ddots & \vdots \\
-\lambda k_{n1} \mu(A_1) & -\lambda k_{n2} \mu(A_2) & \cdots & 1 - \lambda k_{nn} \mu(A_n)
\end{bmatrix}
\begin{bmatrix}
\phi(\xi_1) \\
\phi(\xi_2) \\
\vdots \\
\phi(\xi_n)
\end{bmatrix}
= \begin{bmatrix}
F(\xi_1) \\
F(\xi_2) \\
\vdots \\
F(\xi_n)
\end{bmatrix}
\]

where \(k_{ij} = K(\xi_i, \xi_j) \).

Then we must have the non-singular coefficient matrix

\[
D(\lambda) = 1 - \lambda \sum_{i} k_{ii} \mu(A_i) + \frac{\lambda^2}{2!} \sum_{i,j} k_{ij} \mu(A_i) k_{ji} \mu(A_j) + \cdots
\]

Then taking finer and finer partitions, the limit value coincides to its integral. So we have

\[
D(\lambda) = 1 - \lambda EK(\xi, \xi) + \frac{\lambda^2}{2!} \left[\begin{array}{cc} K(\xi_1, \xi_1) & K(\xi_1, \xi_2) \\ K(\xi_2, \xi_1) & K(\xi_2, \xi_2) \end{array} \right] + \text{other terms}
\]

Here second expression is w.r.t product measure.

So we have

Theorem 4.1. If \(X \) is a compact topological space and \(\mu \) is defined on its \(\sigma \)-field then the solution for the above integral equation is given by

\[
\phi(x) = F(x) + \lambda \int_{\Omega} R(x, \xi, \lambda) d\mu(\xi)
\]

where \(R(x, \xi, \lambda) = \frac{D(x, \xi, \lambda)}{D(\lambda)} \) and \(D(x, \xi, \lambda) = B_0(x, \xi) + \sum_{j=1}^{\infty} (-1)^j \frac{\lambda^j}{j!} B_j(x, \xi) \)

and \(B_j(x, \xi) = \int_{\Omega} \cdots \int_{\Omega} K(x, \xi_1, \cdots, \xi_j) d\mu(x) d\mu(\xi_1) \cdots d\mu(\xi_j) \)

\[
D(\lambda) = 1 - \sum_{j=1}^{\infty} (-1)^j \frac{\lambda^j}{j!} \int_{\Omega} \cdots \int_{\Omega} K(\xi_1, \cdots, \xi_j) d\mu(\xi_1) \cdots d\mu(\xi_j)
\]

\(K(\cdot, \cdot) \) is a measurable, bounded function on the product \(\sigma \)-field. \(F(\cdot) \) is a given measurable function.
Proof: Holds as before, by partitioning the space into $B_1, B_2, \cdots, B_k(x)$ such that for given x, the integral can be approximated. Similarly for other x also. Moreover, by compactness \exists finite number of sets A_1, A_2, \cdots, A_k such that $\forall x$ the integral can be approximated by these sets and rest of the proof is as before.

Conclusion
We have extended the idea of power series technique to linear equations but with different setup. For non-linear case there is scope for further study.

References
2. Volterra V., Lecons sur la theorie mathematiques de la lutte pour la vie, Paris, 214 (1931)